25,452 research outputs found
Small and medium agility dogs alter their kinematics when the distance between hurdles differs
There is currently a lack of research examining the health and welfare implications for competitive agility dogs. The aim of this study was to examine if jump kinematics and apparent joint angles in medium (351 mm - 430 mm to the withers) and small (< 350 mm to the withers) agility dogs altered when distances between consecutive upright hurdles differ. Dogs ran a course of nine hurdles; three set at 3.6 m apart; three at 4 m apart and three at 5 m apart. Both medium (P=0.044) and small (P=0.006) dogs landed closer to the hurdle when consecutive hurdles were set at 3.6 m apart, with small dogs jumping slower at this distance (P=0.006). Results indicate that jump kinematics, but not apparent joint angles, alter when the spacing between hurdles differs. These findings may have implications for the health and welfare of agility dogs and should be used to inform future changes to rules and regulations
Heavy Meson Masses in the \epsilon-Regime of HM\chi PT
The pseudoscalar and vector heavy meson masses are calculated in the
\epsilon-regime of Heavy Meson Chiral Perturbation Theory to order \epsilon^4.
The results of this calculation will allow the determination of low-energy
coefficients (LECs) directly from Lattice QCD calculations of the heavy mesons
masses for lattices that satisfy the \epsilon-regime criteria. In particular,
the LECs that parametrize the NLO volume dependance of the heavy meson masses
are necessary for evaluating the light pseudoscalar meson (\pi, K, \eta) and
heavy meson ({D^0, D^+, D^+_s}, {B^-,\bar{B}^0,\bar{B}^0_s}) scattering phase
shifts.Comment: 16 pages, 6 figure
Bounds on Heavy-to-Heavy Mesonic Form Factors
We provide upper and lower bounds on the form factors for B -> D, D^* by
utilizing inclusive heavy quark effective theory sum rules. These bounds are
calculated to leading order in Lambda_QCD/m_Q and alpha_s. The O(alpha_s^2
beta_0) corrections to the bounds at zero recoil are also presented. We compare
our bounds with some of the form factor models used in the literature. All the
models we investigated failed to fall within the bounds for the combination of
form factors (omega^2 - 1)/(4 omega)|omega h_{A2}+h_{A3}|^2.Comment: 27 pages, 10 figure
Stability of Magneto-optical Traps with Large Field Gradients: Limits on the Tight Confinement of Single Atoms
We report measurements of the stability of magneto-optical traps (MOTs) for neutral atoms in the limit of tight confinement of a single atom. For quadrupole magnetic field gradients at the trap center greater than ∼1 kG/cm, we find that stochastic diffusion of atoms out of the trapping volume becomes the dominant particle loss mechanism, ultimately limiting the MOT size to greater than ∼5 μm. We measured and modeled the diffusive loss rate as a function of laser power, detuning, and field gradient for trapped cesium atoms. In addition, for as few as two atoms, the collisional loss rates become very high for tightly confined traps, allowing the direct observation of isolated two-body atomic collisions in a MOT
Characterization of highly-oriented ferroelectric Pb_xBa_(1-x)TiO_3
Pb_xBa_(1-x)TiO_3 (0.2 ≾ x ≾ 1) thin films were deposited on single-crystal MgO as well as amorphous Si_3N_4/Si substrates using biaxially textured MgO buffer templates, grown by ion beam-assisted deposition (IBAD). The ferroelectric films were stoichiometric and highly oriented, with only (001) and (100) orientations evident in x-ray diffraction (XRD) scans. Films on biaxially textured templates had smaller grains (60 nm average) than those deposited on single-crystal MgO (300 nm average). Electron backscatter diffraction (EBSD) has been used to study the microtexture on both types of substrates and the results were consistent with x-ray pole figures and transmission electron microscopy (TEM) micrographs that indicated the presence of 90° domain boundaries, twins, in films deposited on single-crystal MgO substrates. In contrast, films on biaxially textured substrates consisted of small single-domain grains that were either c or a oriented. The surface-sensitive EBSD technique was used to measure the tetragonal tilt angle as well as in-plane and out-of-plane texture. High-temperature x-ray diffraction (HTXRD) of films with 90° domain walls indicated large changes, as much as 60%, in the c and a domain fractions with temperature, while such changes were not observed for Pb_xBa_(1-x)TiO_3 (PBT) films on biaxially textured MgO/Si_3N_4/Si substrates, which lacked 90° domain boundaries
Current collection by high voltage anodes in near ionospheric conditions
The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density
Model-Independent Semileptonic Form Factors Using Dispersion Relations
We present a method for parametrizing heavy meson semileptonic form factors
using dispersion relations, and from it produce a two-parameter description of
the B -> B elastic form factor. We use heavy quark symmetry to relate this
function to B -> D* l nu form factors, and extract
|V_cb|=0.0355^{+0.0029}_{-0.0025} from experimental data with a least squares
fit. Our method eliminates model-dependent uncertainties inherent in choosing a
parametrization for the extrapolation of the differential decay rate to
threshold.Comment: uses lanlmac(harvmac) and epsf, 12 pages, 1 eps figure included (Talk
by BG at the 6-th International Symposium on Heavy Flavour Physics, Pisa,
Italy, 6--10 June, 1995
Properties of bright squeezed vacuum at increasing brightness
A bright squeezed vacuum (BSV) is a nonclassical macroscopic state of light, which is generated through high-gain parametric down-conversion or four-wave mixing. Although the BSV is an important tool in quantum optics and has a lot of applications, its theoretical description is still not complete. In particular, the existing description in terms of Schmidt modes with gain-independent shapes fails to explain the spectral broadening observed in the experiment as the mean number of photons increases. Meanwhile, the semiclassical description accounting for the broadening does not allow us to decouple the intermodal photon-number correlations. In this work, we present a new generalized theoretical approach to describe the spatial properties of a multimode BSV. In the multimode case, one has to take into account the complicated interplay between all involved modes: each plane-wave mode interacts with all other modes, which complicates the problem significantly. The developed approach is based on exchanging the (k, t ) and (ω, z) representations and solving a system of integrodifferential equations. Our approach predicts correctly the dynamics of the Schmidt modes and the broadening of the angular distribution with the increase in the BSV mean photon number due to a stronger pumping. Moreover, the model correctly describes various properties of a widely used experimental configuration with two crystals and an air gap between them, namely, an SU(1,1) interferometer. In particular, it predicts the narrowing of the intensity distribution, the reduction and shift of the side lobes, and the decline in the interference visibility as the mean photon number increases due to stronger pumping. The presented experimental results confirm the validity of the new approach. The model can be easily extended to the case of the frequency spectrum, frequency Schmidt modes, and other experimental configurations
- …