838 research outputs found
Quantum Corrections to the ‘Atomistic’ MOSFET Simulations
Published versio
Signatures of the disk-jet coupling in the Broad-line Radio Quasar 4C+74.26
Here we explore the disk-jet connection in the broad-line radio quasar
4C+74.26, utilizing the results of the multiwavelength monitoring of the
source. The target is unique in that its radiative output at radio wavelengths
is dominated by a moderately-beamed nuclear jet, at optical frequencies by the
accretion disk, and in the hard X-ray range by the disk corona. Our analysis
reveals a correlation (local and global significance of 96\% and 98\%,
respectively) between the optical and radio bands, with the disk lagging behind
the jet by days. We discuss the possible explanation for this,
speculating that the observed disk and the jet flux changes are generated by
magnetic fluctuations originating within the innermost parts of a truncated
disk, and that the lag is related to a delayed radiative response of the disk
when compared with the propagation timescale of magnetic perturbations along
relativistic outflow. This scenario is supported by the re-analysis of the
NuSTAR data, modelled in terms of a relativistic reflection from the disk
illuminated by the coronal emission, which returns the inner disk radius
. We discuss the global energetics in
the system, arguing that while the accretion proceeds at the Eddington rate,
with the accretion-related bolometric luminosity erg s , the jet total kinetic energy
erg s, inferred from the dynamical
modelling of the giant radio lobes in the source, constitutes only a small
fraction of the available accretion power.Comment: 9 pages and 6 figures, ApJ accepte
Waste Management Options for Long-Duration Space Missions: When to Reject, Reuse, or Recycle
The amount of waste generated on long-duration space missions away from Earth orbit creates the daunting challenge of how to manage the waste through reuse, rejection, or recycle. The option to merely dispose of the solid waste through an airlock to space was studied for both Earth-moon libration point missions and crewed Mars missions. Although the unique dynamic characteristics of an orbit around L2 might allow some discarded waste to intersect the lunar surface before re-impacting the spacecraft, the large amount of waste needed to be managed and potential hazards associated with volatiles recondensing on the spacecraft surfaces make this option problematic. A second option evaluated is to process the waste into useful gases to be either vented to space or used in various propulsion systems. These propellants could then be used to provide the yearly station-keeping needs at an L2 orbit, or if processed into oxygen and methane propellants, could be used to augment science exploration by enabling lunar mini landers to the far side of the moon
Dynamical cluster-decay model for hot and rotating light-mass nuclear systems, applied to low-energy S + Mg Ni reaction
The dynamical cluster-decay model (DCM) is developed further for the decay of
hot and rotating compound nuclei (CN) formed in light heavy-ion reactions. The
model is worked out in terms of only one parameter, namely the neck-length
parameter, which is related to the total kinetic energy TKE(T) or effective
Q-value at temperature T of the hot CN, defined in terms of the
both the light-particles (LP), with 4, Z 2, as well as the
complex intermediate mass fragments (IMF), with , is
considered as the dynamical collective mass motion of preformed clusters
through the barrier. Within the same dynamical model treatment, the LPs are
shown to have different characteristics as compared to the IMFs. The systematic
variation of the LP emission cross section , and IMF emission
cross section , calculated on the present DCM match exactly the
statistical fission model predictions. It is for the first time that a
non-statistical dynamical description is developed for the emission of
light-particles from the hot and rotating CN. The model is applied to the decay
of Ni formed in the S + Mg reaction at two incident
energies E = 51.6 and 60.5 MeV. Both the IMFs and average
spectra are found to compare reasonably nicely with the experimental data,
favoring asymmetric mass distributions. The LPs emission cross section is shown
to depend strongly on the type of emitted particles and their multiplicities
Coronal Shock Waves, EUV waves, and their Relation to CMEs. II. Modeling MHD Shock Wave Propagation Along the Solar Surface, Using Nonlinear Geometrical Acoustics
We model the propagation of a coronal shock wave, using nonlinear geometrical
acoustics. The method is based on the Wentzel-Kramers-Brillouin (WKB) approach
and takes into account the main properties of nonlinear waves: i) dependence of
the wave front velocity on the wave amplitude, ii) nonlinear dissipation of the
wave energy, and iii) progressive increase in the duration of solitary shock
waves. We address the method in detail and present results of the modeling of
the propagation of shock-associated extreme-ultraviolet (EUV) waves as well as
Moreton waves along the solar surface in the simplest solar corona model. The
calculations reveal deceleration and lengthening of the waves. In contrast,
waves considered in the linear approximation keep their length unchanged and
slightly accelerate.Comment: 15 pages, 7 figures, accepted for publication in Solar Physic
Emission of intermediate mass fragments from hot Ba formed in low-energy Ni+Ni reaction
The complex fragments (or intermediate mass fragments) observed in the
low-energy Ni+NiBa reaction, are studied within
the dynamical cluster decay model for s-wave with the use of the
temperature-dependent liquid drop, Coulomb and proximity energies. The
important result is that, due to the temperature effects in liquid drop energy,
the explicit preference for -like fragments is washed out, though the
C (or the complementary Sn) decay is still predicted to be one
of the most probable -nucleus decay for this reaction. The production
rates for non- like intermediate mass fragments (IMFs) are now higher
and the light particle production is shown to accompany the IMFs at all
incident energies, without involving any statistical evaporation process in the
model. The comparisons between the experimental data and the (s-wave)
calculations for IMFs production cross sections are rather satisfactory and the
contributions from other -waves need to be added for a further
improvement of these comparisons and for calculations of the total kinetic
energies of fragments.Comment: 22 pages, 15 figure
Signatures of the Disk-Jet Coupling in the Broad-line Radio Quasar 4C+74.26
We explore the disk-jet connection in the broad-line radio quasar 4C+74.26, utilizing the results of multiwavelength monitoring of the source. The target is unique in that its radiative output at radio wavelengths is dominated by a moderately beamed nuclear jet, at optical frequencies by the accretion disk, and in the hard X-ray range by the disk corona. Our analysis reveals a correlation (local and global significance of 96% and 98% respectively) between the optical and radio bands, with the disk lagging behind the jet by 250 +/- 42 days. We discuss the possible explanation for this, speculating that the observed disk and the jet flux changes are generated by magnetic fluctuations originating within the innermost parts of a truncated disk, and that the lag is related to a delayed radiative response of the disk when compared with the propagation timescale of magnetic perturbations along a relativistic outflow. This scenario is supported by re-analysis of NuSTAR data, modeled in terms of a relativistic reflection from the disk illuminated by the coronal emission, which returns an inner disk radius R-in/R-ISCO = 35(-16)(+40). We discuss the global energetics in the system, arguing that while the accretion proceeds at the Eddington rate, with the accretion-related bolometric luminosity L-bol similar to 9 x 10(46) erg s(-1) similar to 0.2L(Edd), the jet total kinetic energy Lj similar to 4 x 10(44) erg s(-1), inferred from the dynamical modeling of the giant radio lobes in the source, constitutes only a small fraction of the available accretion power
Isolation and characterization of Newcastle disease virus from vaccinated commercial layer chicken
Aim: Newcastle disease (ND) is an infectious, highly contagious and destructive viral disease of poultry and controlled by vaccination. In spite of vaccination, incidence of ND was reported in commercial layers with gastrointestinal lesions. This study was undertaken to assess the prevalence and pathotypes of Newcastle disease virus (NDV) involved in gastrointestinal tract abnormalities of vaccinated commercial layer chicken of Namakkal region for a period of three years from 2008 and 2011.
Materials and Methods: Pooled tissue (trachea, lung, spleen, proventriculus, intestine and caecal tonsils) samples collected from dead birds on postmortem examination from 100 layer flocks above 20 weeks of age with gastrointestinal lesions were subjected to isolation of NDV in embryonated specific pathogen free (SPF) chicken eggs. Mean death time (MDT) and intracerebral pathogenicity index of the isolates were characterized. Flock details were collected from NDV positive flocks to assess the prevalence and impact of NDV on vaccinated commercial layer chicken.
Results: Among the 100 flocks examined Newcastle disease virus was detected in 14 flocks as a single infection and 10 flocks as combined infections with worm infestation, necrotic enteritis and coccidiosis. Chicken embryo mean death time (MDT) and intracerebral pathogenicity index (ICPI) values ranged from 50.4 to 96.0 hrs and from 0.650 to 1.675 respectively. Affected birds showed anorexia, diarrohea and drop in egg production. Macropathologically, matting of vent feathers, petechial haemorrhage on the tip of proventricular papilla, caecal tonsils and degeneration of ovarian follicles were noticed. The incidence of ND was most commonly noticed in 20-50 wk of age and between the months of September to November. Morbidity rate varied from 5% to 10% in the NDV alone affected flocks and 5 to 15% in NDV with other concurrent infections. Egg production drop from the expected level ranged between 3 to 7 % in ND and 5 to 10 % in concurrent infections. Average mortality in NDV and concurrently affected (NDV and Coccidiosis) flocks were 2.89% and 3.50 % respectively.
Conclusion: The present study revealed 24 % of gastrointestinal tract abnormalities in commercial layer chicken were caused by various pathotypes of Newcastle disease virus. The virus caused the disease as single and concurrently with other diseases. Vaccination minimized the clinical manifestation and lesions even in velogenic virus affected flocks
- …