132 research outputs found

    Dynamical description of quantum computing: generic nonlocality of quantum noise

    Get PDF
    We develop dynamical non-Markovian description of quantum computing in weak coupling limit, in lowest order approximation. We show that long range memory of quantum reservoir produces strong interrelation between structure of noise and quantum algorithm, implying nonlocal attacks of noise. We then argue that the quantum error correction method fails to protect quantum computation against electromagnetic or phonon vacuum which exhibit 1/t41/t^4 memory. This shows that the implicit assumption of quantum error correction theory -- independence of noise and self-dynamics -- fails in long time regimes. We also use our approach to present {\it pure} decoherence and decoherence accompanied by dissipation in terms of spectral density of reservoir. The so-called {\it dynamical decoupling} method is discussed in this context. Finally, we propose {\it minimal decoherence model}, in which the only source of decoherence is vacuum. We optimize fidelity of quantum information processing under the trade-off between speed of gate and strength of decoherence.Comment: 12 pages, minor corrections, softened interpretation of the result

    Classicality of quantum information processing

    Get PDF
    The ultimate goal of the classicality programme is to quantify the amount of quantumness of certain processes. Here, classicality is studied for a restricted type of process: quantum information processing (QIP). Under special conditions, one can force some qubits of a quantum computer into a classical state without affecting the outcome of the computation. The minimal set of conditions is described and its structure is studied. Some implications of this formalism are the increase of noise robustness, a proof of the quantumness of mixed state quantum computing and a step forward in understanding the very foundation of QIP.Comment: Minor changes, published in Phys. Rev. A 65, 42319 (2002

    Dynamics of quantum entanglement

    Full text link
    A model of discrete dynamics of entanglement of bipartite quantum state is considered. It involves a global unitary dynamics of the system and periodic actions of local bistochastic or decaying channel. For initially pure states the decay of entanglement is accompanied with an increase of von Neumann entropy of the system. We observe and discuss revivals of entanglement due to unitary interaction of both subsystems. For some mixed states having different marginal entropies of both subsystems (one of them larger than the global entropy and the other one one smaller) we find an asymmetry in speed of entanglement decay. The entanglement of these states decreases faster, if the depolarizing channel acts on the "classical" subsystem, characterized by smaller marginal entropy.Comment: 10 pages, Revtex, 10 figures, refined versio

    Phase Measurement for Driven Spin Oscillations in a Storage Ring

    Get PDF
    This paper reports the first simultaneous measurement of the horizontal and vertical components of the polarization vector in a storage ring under the influence of a radio frequency (rf) solenoid. The experiments were performed at the Cooler Synchrotron COSY in J\"ulich using a vector polarized, bunched 0.97GeV/c0.97\,\textrm{GeV/c} deuteron beam. Using the new spin feedback system, we set the initial phase difference between the solenoid field and the precession of the polarization vector to a predefined value. The feedback system was then switched off, allowing the phase difference to change over time, and the solenoid was switched on to rotate the polarization vector. We observed an oscillation of the vertical polarization component and the phase difference. The oscillations can be described using an analytical model. The results of this experiment also apply to other rf devices with horizontal magnetic fields, such as Wien filters. The precise manipulation of particle spins in storage rings is a prerequisite for measuring the electric dipole moment (EDM) of charged particles

    ABC Effect and Resonance Structure in the Double-Pionic Fusion to 3^3He

    Full text link
    Exclusive and kinematically complete measurements of the double pionic fusion to 3^3He have been performed in the energy region of the so-called ABC effect, which denotes a pronounced low-mass enhancement in the ππ\pi\pi-invariant mass spectrum. The experiments were carried out with the WASA detector setup at COSY. Similar to the observations in the basic pndπ0π0pn \to d \pi^0\pi^0 reaction and in the dd4dd \to ^4Heπ0π0\pi^0\pi^0 reaction, the data reveal a correlation between the ABC effect and a resonance-like energy dependence in the total cross section. Differential cross sections are well described by the hypothesis of dd^* resonance formation during the reaction process in addition to the conventional tt-channel ΔΔ\Delta\Delta mechanism. The deduced dd^* resonance width can be understood from collision broadening due to Fermi motion of the nucleons in initial and final nuclei

    Neutron-Proton Scattering in the Context of the dd^*(2380) Resonance

    Get PDF
    New data on quasifree polarized neutron-proton scattering, in the region of the recently observed dd^* resonance structure, have been obtained by exclusive and kinematically complete high-statistics measurements with WASA at COSY. This paper details the determination of the beam polarization, checks of the quasifree character of the scattering process, on all obtained AyA_y angular distributions and on the new partial-wave analysis, which includes the new data producing a resonance pole in the 3D3^3D_3-3G3^3G_3 coupled partial waves at (2380±10i40±52380\pm10 - i40\pm5) MeV -- in accordance with the dd^* dibaryon resonance hypothesis. The effect of the new partial-wave solution on the description of total and differential cross section data as well as specific combinations of spin-correlation and spin-transfer observables available from COSY-ANKE measurements at TdT_d = 2.27 GeV is discussed

    Measurement of the pnppπ0πpn \to pp\pi^0\pi^- Reaction in Search for the Recently Observed Resonance Structure in dπ0π0d\pi^0\pi^0 and dπ+πd\pi^+\pi^- systems

    Get PDF
    Exclusive measurements of the quasi-free pnppπ0πpn \to pp\pi^0\pi^- reaction have been performed by means of pdpd collisions at TpT_p = 1.2 GeV using the WASA detector setup at COSY. Total and differential cross sections have been obtained covering the energy region s\sqrt s = (2.35 - 2.46) GeV, which includes the region of the ABC effect and its associated resonance structure. No ABC effect, {\it i.e.} low-mass enhancement is found in the π0π\pi^0\pi^--invariant mass spectrum -- in agreement with the constraint from Bose statistics that the isovector pion pair can not be in relative s-wave. At the upper end of the covered energy region tt-channel processes for Roper, Δ(1600)\Delta(1600) and ΔΔ\Delta\Delta excitations provide a reasonable description of the data, but at low energies the measured cross sections are much larger than predicted by such processes. Adding a resonance amplitude for the resonance at mm=~2.37 GeV with Γ\Gamma =~70 MeV and I(JP)= 0(3+)I(J^P)=~0(3^+) observed recently in pndπ0π0pn \to d\pi^0\pi^0 and pndπ+πpn \to d\pi^+\pi^- reactions leads to an agreement with the data also at low energies

    Search for a dark photon in the π0e+eγ\pi^0 \to e^+e^-\gamma decay

    Full text link
    The presently world largest data sample of pi0 --> gamma e+e- decays containing nearly 5E5 events was collected using the WASA detector at COSY. A search for a dark photon U produced in the pi0 --> gamma U --> gamma e+e- decay from the pp-->pp\pi^0 reaction was carried out. An upper limit on the square of the U-gamma mixing strength parameter epsilon^2 of 5e-6 at 90% CL was obtained for the mass range 20 MeV <M_U< 100 MeV. This result together with other recent experimental limits significantly reduces the M_U vs. \epsilon^2 parameter space preferred by the measured value of the muon anomalous magnetic moment.Comment: 16 pages, 8 figures; improved analysis extending the exclusion region to 20 MeV<M_U< 100 MeV; implemented changes requested by referee

    Evidence for a New Resonance from Polarized Neutron-Proton Scattering

    Get PDF
    Exclusive and kinematically complete high-statistics measurements of quasifree polarized np\vec{n}p scattering have been performed in the energy region of the narrow resonance structure dd^* with I(JP)=0(3+)I(J^P) = 0(3^+), MM \approx 2380 MeV/c2c^2 and Γ\Gamma \approx 70 MeV observed recently in the double-pionic fusion channels pndπ0π0pn \to d\pi^0\pi^0 and pndπ+πpn \to d\pi^+\pi^-. The experiment was carried out with the WASA detector setup at COSY having a polarized deuteron beam impinged on the hydrogen pellet target and utilizing the quasifree process dpnp+pspectator\vec{d}p \to np + p_{spectator}. That way the npnp analyzing power AyA_y was measured over a large angular range. The obtained AyA_y angular distributions deviate systematically from the current SAID SP07 NN partial-wave solution. Incorporating the new AyA_y data into the SAID analysis produces a pole in the 3D33G3^3D_3 - ^3G_3 waves as expected from the dd^* resonance hypothesis
    corecore