4 research outputs found
Ontology-based data access with a horn fragment of metric temporal logic
We advocate datalogMTL, a datalog extension of a Horn fragment of the metric temporal logic MTL, as a language for ontology-based access to temporal log data. We show that datalogMTL is EXPSPACE-complete even with punctual intervals, in which case MTL is known to be undecidable. Nonrecursive datalogMTL turns out to be PSPACE-complete for combined complexity and in AC0 for data complexity. We demonstrate by two real-world use cases that nonrecursive datalogMTL programs can express complex temporal concepts from typical user queries and thereby facilitate access to log data. Our experiments with Siemens turbine data and MesoWest weather data show that datalogMTL ontology-mediated queries are efficient and scale on large datasets of up to 11GB
Querying log data with Metric Temporal Logic
We propose a novel framework for ontology-based access to temporal log data using a datalog extension datalogMTL of a Horn fragment of the metric temporal logic MTL. We show that datalogMTL is ExpSpace-complete even with punctual intervals, in which case full MTL is known to be undecidable. We also prove that nonrecursive datalogMTL is PSpace-complete for combined complexity and in AC0 for data complexity. We demonstrate by two real-world use cases that nonrecursive datalogMTL programs can express complex temporal concepts from typical user queries and thereby facilitate access to temporal log data. Our experiments with Siemens turbine data and MesoWest weather data show that datalogMTL ontology-mediated queries are efficient and scale on large datasets of up to 8.3GB
The virtual knowledge graph system Ontop
Ontop is a popular open-source virtual knowledge graph system that can expose heterogeneous data sources as a unified knowledge graph. Ontop has been widely used in a variety of research and industrial projects. In this paper, we describe the challenges, design choices, new features of the latest release of Ontop v4, summarizing the development efforts of the last 4 years
Semantic rule-based equipment diagnostics
Industrial rule-based diagnostic systems are often data-dependant in the sense that they rely on specific characteristics of individual pieces of equipment. This dependence poses significant challenges in rule authoring, reuse, and maintenance by engineers. In this work we address these problems by relying on Ontology-Based Data Access: we use ontologies to mediate the equipment and the rules. We propose a semantic rule language, sigRL, where sensor signals are first class citizens. Our language offers a balance of expressive power, usability, and efficiency: it captures most of Siemens data-driven diagnostic rules, significantly simplifies authoring of diagnostic tasks, and allows to efficiently rewrite semantic rules from ontologies to data and execute over data. We implemented our approach in a semantic diagnostic system, deployed it in Siemens, and conducted experiments to demonstrate both usability and efficiency