428 research outputs found

    A lattice determination of g_A and <x> from overlap fermions

    Full text link
    We present results for the nucleon's axial charge g_A and the first moment of the unpolarized parton distribution function from a simulation of quenched overlap fermions.Comment: Talk presented at Lattice2004(chiral), 4 pages, 4 figure

    Monte Carlo simulations and field transformation: the scalar case

    Get PDF
    We describe a new method in lattice field theory to compute observables at various values of the parameters lambda_i in the action S[phi,lambda_i]. Firstly one performs a single simulation of a ``reference action'' S[phi^r, lambda_i^r] with fixed lambda_i^r. Then the phi^r-configurations are transformed into those of a field phi distributed according to S[phi,lambda_i], apart from a ``remainder action'' which enters as a \break weight. In this way we measure the observables at values of lambda_i different from lambda_i^r. We study the performance of the algorithm in the case of the simplest renormalizable model, namely the phi^4 scalar theory on a four dimensional lattice and compare the method with the ``histogram'' technique of which it is a generalization.Comment: Latex, 23 pgs, 8 eps-figures include

    Endpoint of the hot electroweak phase transition

    Full text link
    We give the nonperturbative phase diagram of the four-dimensional hot electroweak phase transition. The Monte-Carlo analysis is done on lattices with different lattice spacings (aa). A systematic extrapolation a0a \to 0 is done. Our results show that the finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses mH<66.5±1.4m_H<66.5 \pm 1.4 GeV. At this endpoint the phase transition is of second order, whereas above it only a rapid cross-over can be seen. The full four-dimensional result agrees completely with that of the dimensional reduction approximation. This fact is of particular importance, because it indicates that the fermionic sector of the Standard Model can be included perturbatively. We obtain that the Higgs-boson endpoint mass in the Standard Model is 72.4±1.772.4 \pm 1.7 GeV. Taking into account the LEP Higgs-boson mass lower bound excludes any electroweak phase transition in the Standard Model.Comment: Latex, 7 pages, 4 figure

    Sabotage in Contests: A Survey

    Get PDF
    A contest is a situation in which individuals expend irretrievable resources to win valuable prize(s). ‘Sabotage’ is a deliberate and costly act of damaging a rival’s' likelihood of winning the contest. Sabotage can be observed in, e.g., sports, war, promotion tournaments, political or marketing campaigns. In this article, we provide a model and various perspectives on such sabotage activities and review the economics literature analyzing the act of sabotage in contests. We discuss the theories and evidence highlighting the means of sabotage, why sabotage occurs, and the effects of sabotage on individual players and on overall welfare, along with possible mechanisms to reduce sabotage. We note that most sabotage activities are aimed at the ablest player, the possibility of sabotage reduces productive effort exerted by the players, and sabotage may lessen the effectiveness of public policies, such as affirmative action, or information revelation in contests. We discuss various policies that a designer may employ to counteract sabotage activities. We conclude by pointing out some areas of future research

    Feasibility, drug safety, and effectiveness of etiological treatment programs for Chagas disease in Honduras, Guatemala, and Bolivia: 10-year experience of Médecins Sans Frontières

    Get PDF
    BACKGROUND: Chagas disease (American trypanosomiasis) is a zoonotic or anthropozoonotic disease caused by the parasite Trypanosoma cruzi. Predominantly affecting populations in poor areas of Latin America, medical care for this neglected disease is often lacking. Médecins Sans Frontières/Doctors Without Borders (MSF) has provided diagnostic and treatment services for Chagas disease since 1999. This report describes 10 years of field experience in four MSF programs in Honduras, Guatemala, and Bolivia, focusing on feasibility protocols, safety of drug therapy, and treatment effectiveness. METHODOLOGY: From 1999 to 2008, MSF provided free diagnosis, etiological treatment, and follow-up care for patients <18 years of age seropositive for T. cruzi in Yoro, Honduras (1999-2002); Olopa, Guatemala (2003-2006); Entre Ríos, Bolivia (2002-2006); and Sucre, Bolivia (2005-2008). Essential program components guaranteeing feasibility of implementation were information, education, and communication (IEC) at the community and family level; vector control; health staff training; screening and diagnosis; treatment and compliance, including family-based strategies for early detection of adverse events; and logistics. Chagas disease diagnosis was confirmed by testing blood samples using two different diagnostic tests. T. cruzi-positive patients were treated with benznidazole as first-line treatment, with appropriate counseling, consent, and active participation from parents or guardians for daily administration of the drug, early detection of adverse events, and treatment withdrawal, when necessary. Weekly follow-up was conducted, with adverse events recorded to assess drug safety. Evaluations of serological conversion were carried out to measure treatment effectiveness. Vector control, entomological surveillance, and health education activities were carried out in all projects with close interaction with national and regional programs. RESULTS: Total numbers of children and adolescents tested for T. cruzi in Yoro, Olopa, Entre Ríos, and Sucre were 24,471, 8,927, 7,613, and 19,400, respectively. Of these, 232 (0.9%), 124 (1.4%), 1,475 (19.4%), and 1,145 (5.9%) patients, respectively, were diagnosed as seropositive. Patients were treated with benznidazole, and early findings of seroconversion varied widely between the Central and South American programs: 87.1% and 58.1% at 18 months post-treatment in Yoro and Olopa, respectively; 5.4% by up to 60 months in Entre Ríos; and 0% at an average of 18 months in Sucre. Benznidazole-related adverse events were observed in 50.2% and 50.8% of all patients treated in Yoro and Olopa, respectively, and 25.6% and 37.9% of patients in Entre Ríos and Sucre, respectively. Most adverse events were mild and manageable. No deaths occurred in the treatment population. CONCLUSIONS: These results demonstrate the feasibility of implementing Chagas disease diagnosis and treatment programs in resource-limited settings, including remote rural areas, while addressing the limitations associated with drug-related adverse events. The variability in apparent treatment effectiveness may reflect differences in patient and parasite populations, and illustrates the limitations of current treatments and measures of efficacy. New treatments with improved safety profiles, pediatric formulations of existing and new drugs, and a faster, reliable test of cure are all urgently needed

    Photoionization of helium atoms irradiated with intense vacuum ultraviolet free-electron laser light. Part I. Experimental study of multiphoton and single-photon processes

    Get PDF
    Sem informaçãoThe interaction of He atoms with intense vacuum-ultraviolet light of a free-electron laser is investigated using time-of-flight mass spectroscopy and photoelectron spectroscopy. The atoms were irradiated with 100 fs pulses at 95 nm wavelength, which corresponds to similar to 13 eV photon energy. The ionization of He atoms is observed at a peak intensity of 10(10)-10(13) W/cm(2), which is due both to nonlinear multiphoton ionization with the fundamental wavelength and single-photon ionization with third harmonic radiation of the free-electron laser. The observation of two sharp photoelectron peaks in the kinetic energy spectra, that are separated by the photon energy, is in agreement with the numerical solution of the time-dependent Schrodinger equation. The calculation was done using the fully quantized field and a limited but representative set of basis states. The ionization rate dependence on the laser peak intensity indicates that: (a) The low-energy peak in the photoelectron spectra is mainly due to two-photon absorption of the fundamental, but (b) the high-energy peak at 15.4 eV is probably due to third harmonic FEL radiation. The theoretically predicted contribution from three-photon absorption of the fundamental is of about the same order of magnitude and could not be separated from the third harmonic background signal. Particularly, the photoelectron spectra and He+ time-of-flight data give evidence that the intensity of third harmonic light is high enough to perform single-shot spectroscopy on gas phase samples.The interaction of He atoms with intense vacuum-ultraviolet light of a free-electron laser is investigated using time-of-flight mass spectroscopy and photoelectron spectroscopy. The atoms were irradiated with 100 fs pulses at 95 nm wavelength, which corresponds to similar to 13 eV photon energy. The ionization of He atoms is observed at a peak intensity of 10(10)-10(13) W/cm(2), which is due both to nonlinear multiphoton ionization with the fundamental wavelength and single-photon ionization with third harmonic radiation of the free-electron laser. The observation of two sharp photoelectron peaks in the kinetic energy spectra, that are separated by the photon energy, is in agreement with the numerical solution of the time-dependent Schrodinger equation. The calculation was done using the fully quantized field and a limited but representative set of basis states. The ionization rate dependence on the laser peak intensity indicates that: (a) The low-energy peak in the photoelectron spectra is mainly due to two-photon absorption of the fundamental, but (b) the high-energy peak at 15.4 eV is probably due to third harmonic FEL radiation. The theoretically predicted contribution from three-photon absorption of the fundamental is of about the same order of magnitude and could not be separated from the third harmonic background signal. Particularly, the photoelectron spectra and He+ time-of-flight data give evidence that the intensity of third harmonic light is high enough to perform single-shot spectroscopy on gas phase samples.72218Sem informaçãoSem informaçãoSem informaçãoWe thank A. Swiderski for technical support in the design and construction of the experiment and the TTF team at DESY for running the accelerator, working on the FEL and the photon diagnostics. This work was supported by the DFG

    Interaction of argon clusters with intense VUV-laser radiation: the role of electronic structure in the energy-deposition process

    Get PDF
    Sem informaçãoThe response of Ar clusters to intense vacuum-ultraviolet pulses is investigated with photoion spectroscopy By varying the laser wavelength, the initial excitation was either tuned to absorption bands of surface or bulk atoms of clusters. Multiple ionization is observed, which leads to Coulomb explosion. The efficiency of resonant 2-photon ionization for initial bulk and surface excitation is compared with that of the norresonant process at different laser intensities. The specific electronic structure of clusters plays almost no role in the explosion dynamics at a peak intensity larger than 1.8 X 10(12) W/cm(2). The inner ionization of atoms for resonant and nonresonant excitation is then saturated and the energy deposition is mainly controlled by the plasma heating rate. Molecular dynamics simulations indicate that standard collisional heating cannot fully account for the strong energy absorption.The response of Ar clusters to intense vacuum-ultraviolet pulses is investigated with photoion spectroscopy By varying the laser wavelength, the initial excitation was either tuned to absorption bands of surface or bulk atoms of clusters. Multiple ionization is observed, which leads to Coulomb explosion. The efficiency of resonant 2-photon ionization for initial bulk and surface excitation is compared with that of the norresonant process at different laser intensities. The specific electronic structure of clusters plays almost no role in the explosion dynamics at a peak intensity larger than 1.8 X 10(12) W/cm(2). The inner ionization of atoms for resonant and nonresonant excitation is then saturated and the energy deposition is mainly controlled by the plasma heating rate. Molecular dynamics simulations indicate that standard collisional heating cannot fully account for the strong energy absorption.921414Sem informaçãoSem informaçãoSem informaçãoWe thank A. Swiderski for technical support and the TTF team at DESY for providing the FEL beam and the photon diagnostics. This work was supported by DFG

    Multiple ionization of rare gas atoms irradiated with intense VUV radiation

    Get PDF
    Sem informaçãoThe interaction of intense vacuum-ultraviolet radiation from a free-electron laser with rare gas atoms is investigated. The ionization products of xenon and argon atomic beams are analyzed with time-of-flight mass spectroscopy. At 98 nm wavelength and similar to10(13) W/cm(2) multiple charged ions up to Xe6+ (Ar4+) are detected. From the intensity dependence of multiple charged ion yields the mechanisms of multiphoton processes were derived. In the range of similar to10(12)-10(13) W/cm(2) the ionization is attributed to sequential multiphoton processes. The production of multiple charged ions saturates at 5-30 times lower power densities than at 193 and 564 nm wavelength, respectively.The interaction of intense vacuum-ultraviolet radiation from a free-electron laser with rare gas atoms is investigated. The ionization products of xenon and argon atomic beams are analyzed with time-of-flight mass spectroscopy. At 98 nm wavelength and similar to10(13) W/cm(2) multiple charged ions up to Xe6+ (Ar4+) are detected. From the intensity dependence of multiple charged ion yields the mechanisms of multiphoton processes were derived. In the range of similar to10(12)-10(13) W/cm(2) the ionization is attributed to sequential multiphoton processes. The production of multiple charged ions saturates at 5-30 times lower power densities than at 193 and 564 nm wavelength, respectively.94214Sem informaçãoSem informaçãoSem informaçãoWe thank A. Swiderski for technical support in the design and construction of the cluster experiment and the TTF team at DESY for providing the FEL beam and the photon diagnostics. One of the authors (H.W.) is grateful to Peter Lambropoulos for helpful comments. In addition, we thank R. Santra for making calculations available prior to publication

    Hadron spectrum, quark masses and decay constants from light overlap fermions on large lattices

    Get PDF
    We present results from a simulation of quenched overlap fermions with L\"uscher-Weisz gauge field action on lattices up to 2434824^3 48 and for pion masses down to 250\approx 250 MeV. Among the quantities we study are the pion, rho and nucleon masses, the light and strange quark masses, and the pion decay constant. The renormalization of the scalar and axial vector currents is done nonperturbatively in the RIMOMRI-MOM scheme. The simulations are performed at two different lattice spacings, a0.1a \approx 0.1 fm and 0.15\approx 0.15 fm, and on two different physical volumes, to test the scaling properties of our action and to study finite volume effects. We compare our results with the predictions of chiral perturbation theory and compute several of its low-energy constants. The pion mass is computed in sectors of fixed topology as well
    corecore