344 research outputs found

    The holographic quantum effective potential at finite temperature and density

    Full text link
    We develop a formalism that allows the computation of the quantum effective potential of a scalar order parameter in a class of holographic theories at finite temperature and charge density. The effective potential is a valuable tool for studying the ground state of the theory, symmetry breaking patterns and phase transitions. We derive general formulae for the effective potential and apply them to determine the phase transition temperature and density in the scaling region.Comment: 27 page

    Deconfinement and Thermodynamics in 5D Holographic Models of QCD

    Full text link
    We review 5D holographic approaches to finite temperature QCD. Thermodynamic properties of the "hard-wall" and the "soft-wall" models are derived. Various non-realistic features in these models are cured by the set-up of improved holographic QCD, that we review here.Comment: Invited review paper for Mod. Phys. Let

    On the Temperature Dependence of the Shear Viscosity and Holography

    Get PDF
    We examine the structure of the shear viscosity to entropy density ratio eta/s in holographic theories of gravity coupled to a scalar field, in the presence of higher derivative corrections. Thanks to a non-trivial scalar field profile, eta/s in this setup generically runs as a function of temperature. In particular, its temperature behavior is dictated by the shape of the scalar potential and of the scalar couplings to the higher derivative terms. We consider a number of dilatonic setups, but focus mostly on phenomenological models that are QCD-like. We determine the geometric conditions needed to identify local and global minima for eta/s as a function of temperature, which translate to restrictions on the signs and ranges of the higher derivative couplings. Finally, such restrictions lead to an holographic argument for the existence of a global minimum for eta/s in these models, at or above the deconfinement transition.Comment: references adde

    Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II - The deconfined phase

    Get PDF
    We present a non-perturbative study of the equation of state in the deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a holographic model, based on the improved holographic QCD model, from which we derive a non-trivial relation between the order of the deconfinement phase transition and the behavior of the trace of the energy-momentum tensor as a function of the temperature T. We compare the theoretical predictions of this holographic model with a new set of high-precision numerical results from lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The latter reveal that, similarly to the D=3+1 case, the bulk equilibrium thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy density and entropy density) exhibit nearly perfect proportionality to the number of gluons, and can be successfully compared with the holographic predictions in a broad range of temperatures. Finally, we also show that, again similarly to the D=3+1 case, the trace of the energy-momentum tensor appears to be proportional to T^2 in a wide temperature range, starting from approximately 1.2 T_c, where T_c denotes the critical deconfinement temperature.Comment: 2+36 pages, 10 figures; v2: comments added, curves showing the holographic predictions included in the plots of the pressure and energy and entropy densities, typos corrected: version published in JHE

    Holographic Conformal Window - A Bottom Up Approach

    Full text link
    We propose a five-dimensional framework for modeling the background geometry associated to ordinary Yang-Mills (YM) as well as to nonsupersymmetric gauge theories possessing an infrared fixed point with fermions in various representations of the underlying gauge group. The model is based on the improved holographic approach, on the string theory side, and on the conjectured all-orders beta function for the gauge theory one. We first analyze the YM gauge theory. We then investigate the effects of adding flavors and show that, in the holographic description of the conformal window, the geometry becomes AdS when approaching the ultraviolet and the infrared regimes. As the number of flavors increases within the conformal window we observe that the geometry becomes more and more of AdS type over the entire energy range.Comment: 20 Pages, 3 Figures. v2: references adde

    Holography and Thermodynamics of 5D Dilaton-gravity

    Full text link
    The asymptotically-logarithmically-AdS black-hole solutions of 5D dilaton gravity with a monotonic dilaton potential are analyzed in detail. Such theories are holographically very close to pure Yang-Mills theory in four dimensions. The existence and uniqueness of black-hole solutions is shown. It is also shown that a Hawking-Page transition exists at finite temperature if and only if the potential corresponds to a confining theory. The physics of the transition matches in detail with that of deconfinement of the Yang-Mills theory. The high-temperature phase asymptotes to a free gluon gas at high temperature matching the expected behavior from asymptotic freedom. The thermal gluon condensate is calculated and shown to be crucial for the existence of a non-trivial deconfining transition. The condensate of the topological charge is shown to vanish in the deconfined phase.Comment: LaTeX, 61 pages (main body) + 58 pages (appendix), 25 eps figures. Revised version, published in JHEP. Two equations added in Section 7.4; typos corrected; references adde

    Zero Sound in Effective Holographic Theories

    Full text link
    We investigate zero sound in DD-dimensional effective holographic theories, whose action is given by Einstein-Maxwell-Dilaton terms. The bulk spacetimes include both zero temperature backgrounds with anisotropic scaling symmetry and their near-extremal counterparts obtained in 1006.2124 [hep-th], while the massless charge carriers are described by probe D-branes. We discuss thermodynamics of the probe D-branes analytically. In particular, we clarify the conditions under which the specific heat is linear in the temperature, which is a characteristic feature of Fermi liquids. We also compute the retarded Green's functions in the limit of low frequency and low momentum and find quasi-particle excitations in certain regime of the parameters. The retarded Green's functions are plotted at specific values of parameters in D=4D=4, where the specific heat is linear in the temperature and the quasi-particle excitation exists. We also calculate the AC conductivity in DD-dimensions as a by-product.Comment: 29 pages, 1 figur

    Quantum critical lines in holographic phases with (un)broken symmetry

    Get PDF
    All possible scaling IR asymptotics in homogeneous, translation invariant holographic phases preserving or breaking a U(1) symmetry in the IR are classified. Scale invariant geometries where the scalar extremizes its effective potential are distinguished from hyperscaling violating geometries where the scalar runs logarithmically. It is shown that the general critical saddle-point solutions are characterized by three critical exponents (θ,z,ζ\theta, z, \zeta). Both exact solutions as well as leading behaviors are exhibited. Using them, neutral or charged geometries realizing both fractionalized or cohesive phases are found. The generic global IR picture emerging is that of quantum critical lines, separated by quantum critical points which correspond to the scale invariant solutions with a constant scalar.Comment: v3: 32+29 pages, 2 figures. Matches version published in JHEP. Important addition of an exponent characterizing the IR scaling of the electric potentia
    corecore