71 research outputs found

    Nerve-Cancer Interactions in the Stromal Biology of Pancreatic Cancer

    Get PDF
    Interaction of cancer cells with diverse cell types in the tumor stroma is today recognized to have a fate-determining role for the progression and outcome of human cancers. Despite the well-described interactions of cancer cells with several stromal components, i.e., inflammatory cells, cancer-associated fibroblasts, endothelial cells, and pericytes, the investigation of their peculiar relationship with neural cells is still at its first footsteps. Pancreatic cancer (PCa) with its abundant stroma represents one of the best-studied examples of a malignant tumor with a mutually trophic interaction between cancer cells and the intratumoral nerves embedded in the desmoplastic stroma. Nerves in PCa are a rich source of neurotrophic factors like nerve growth factor (NGF), glial-cell-derived neurotrophic factor (GDNF), artemin; of neuronal chemokines like fractalkine; and of autonomic neurotransmitters like norepinephrine which can all enhance the invasiveness of PCa cells via matrix-metalloproteinase (MMP) upregulation, trigger neural invasion (NI), and activate pro-survival signaling pathways. Similarly, PCa cells themselves provide intrapancreatic nerves with abundant trophic agents which entail a remarkable neuroplasticity, leading to emergence of more routes for NI and cancer spread, to augmented local neuro-surveillance, neural sensitization, and neuropathic pain. The strong correlation of NI with PCa-associated desmoplasia suggests the potential presence of a triangular relationship between nerves, PCa cells, and other stromal partners like myofibroblasts and pancreatic stellate cells which generate tumor desmoplasia. Hence, although not a classical hallmark of human cancers, nerve-cancer interactions can be considered as an indispensable sub-class of cancer-stroma interactions in PCa. The present article provides an overview of the so far known nerve-cancer interactions in PCa and illustrates their ominous role in the stromal biology of human PCa

    Mechanisms of T-Cell Exhaustion in Pancreatic Cancer.

    Get PDF
    T-cell exhaustion is a phenomenon that represents the dysfunctional state of T cells in chronic infections and cancer and is closely associated with poor prognosis in many cancers. The endogenous T-cell immunity and genetically edited cell therapies (CAR-T) failed to prevent tumor immune evasion. The effector T-cell activity is perturbed by an imbalance between inhibitory and stimulatory signals causing a reprogramming in metabolism and the high levels of multiple inhibitory receptors like programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and Lymphocyte-activation gene 3 (Lag-3). Despite the efforts to neutralize inhibitory receptors by a single agent or combinatorial immune checkpoint inhibitors to boost effector function, PDAC remains unresponsive to these therapies, suggesting that multiple molecular mechanisms play a role in stimulating the exhaustion state of tumor-infiltrating T cells. Recent studies utilizing transcriptomics, mass cytometry, and epigenomics revealed a critical role of Thymocyte selection-associated high mobility group box protein (TOX) genes and TOX-associated pathways, driving T-cell exhaustion in chronic infection and cancer. Here, we will review recently defined molecular, genetic, and cellular factors that drive T-cell exhaustion in PDAC. We will also discuss the effects of available immune checkpoint inhibitors and the latest clinical trials targeting various molecular factors mediating T-cell exhaustion in PDAC

    βIII-tubulin: a novel mediator of chemoresistance and metastases in pancreatic cancer

    Get PDF
    Pancreatic cancer is a leading cause of cancer-related deaths in Western societies. This poor prognosis is due to chemotherapeutic drug resistance and metastatic spread. Evidence suggests that microtubule proteins namely, β-tubulins are dysregulated in tumor cells and are involved in regulating chemosensitivity. However, the role of β-tubulins in pancreatic cancer are unknown. We measured the expression of different β-tubulin isotypes in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Next, we used RNAi to silence βIII-tubulin expression in pancreatic cancer cells, and measured cell growth in the absence and presence of chemotherapeutic drugs. Finally, we assessed the role of βIII-tubulin in regulating tumor growth and metastases using an orthotopic pancreatic cancer mouse model. We found that βIII-tubulin is highly expressed in pancreatic adenocarcinoma tissue and pancreatic cancer cells. Further, we demonstrated that silencing βIII-tubulin expression reduced pancreatic cancer cell growth and tumorigenic potential in the absence and presence of chemotherapeutic drugs. Finally, we demonstrated that suppression of βIII-tubulin reduced tumor growth and metastases in vivo. Our novel data demonstrate that βIII-tubulin is a key player in promoting pancreatic cancer growth and survival, and silencing its expression may be a potential therapeutic strategy to increase the long-term survival of pancreatic cancer patients

    Ring1b-dependent epigenetic remodelling is an essential prerequisite for pancreatic carcinogenesis

    Get PDF
    BACKGROUND AND AIMS Besides well-defined genetic alterations, the dedifferentiation of mature acinar cells is an important prerequisite for pancreatic carcinogenesis. Acinar-specific genes controlling cell homeostasis are extensively downregulated during cancer development; however, the underlying mechanisms are poorly understood. Now, we devised a novel in vitro strategy to determine genome-wide dynamics in the epigenetic landscape in pancreatic carcinogenesis. DESIGN With our in vitro carcinogenic sequence, we performed global gene expression analysis and ChIP sequencing for the histone modifications H3K4me3, H3K27me3 and H2AK119ub. Followed by a comprehensive bioinformatic approach, we captured gene clusters with extensive epigenetic and transcriptional remodelling. Relevance of Ring1b-catalysed H2AK119ub in acinar cell reprogramming was studied in an inducible Ring1b knockout mouse model. CRISPR/Cas9-mediated Ring1b ablation as well as drug-induced Ring1b inhibition were functionally characterised in pancreatic cancer cells. RESULTS The epigenome is vigorously modified during pancreatic carcinogenesis, defining cellular identity. Particularly, regulatory acinar cell transcription factors are epigenetically silenced by the Ring1b-catalysed histone modification H2AK119ub in acinar-to-ductal metaplasia and pancreatic cancer cells. Ring1b knockout mice showed greatly impaired acinar cell dedifferentiation and pancreatic tumour formation due to a retained expression of acinar differentiation genes. Depletion or drug-induced inhibition of Ring1b promoted tumour cell reprogramming towards a less aggressive phenotype. CONCLUSIONS Our data provide substantial evidence that the epigenetic silencing of acinar cell fate genes is a mandatory event in the development and progression of pancreatic cancer. Targeting the epigenetic repressor Ring1b could offer new therapeutic options

    Bcl3 Couples Cancer Stem Cell Enrichment With Pancreatic Cancer Molecular Subtypes

    Get PDF
    [Background & Aims]: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown. [Methods]: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs. To determine the biological consequences of BCL3 silencing in vivo and in vitro, we generated bcl3-deficient preclinical mouse models as well as murine cell lines and correlated our findings with human cell lines, PDX models, and 2 independent patient cohorts. We assessed the correlation of bcl3 expression pattern with clinical parameters and subtypes. [Results]: Bcl3 was significantly down-regulated in human CSCs. Recapitulating this phenotype in preclinical mouse models of PDAC via BCL3 genetic knockout enhanced tumor burden, metastasis, epithelial to mesenchymal transition, and reduced overall survival. Fluorescence-activated cell sorting analyses, together with oxygen consumption, sphere formation, and tumorigenicity assays, all indicated that BCL3 loss resulted in CSC compartment expansion promoting cellular dedifferentiation. Overexpression of BCL3 in human PDXs diminished tumor growth by significantly reducing the CSC population and promoting differentiation. Human PDACs with low BCL3 expression correlated with increased metastasis, and BCL3-negative tumors correlated with lower survival and nonclassical subtypes. [Conclusions]: We demonstrate that bcl3 impacts pancreatic carcinogenesis by restraining CSC expansion and by curtailing an aggressive and metastatic tumor burden in PDAC across species. Levels of BCL3 expression are a useful stratification marker for predicting subtype characterization in PDAC, thereby allowing for personalized therapeutic approaches.This work was supported by the Deutsche Forschungsgemeinschaft (grants AL 1174/4-1, AL1174/4-2, and Collaborative Research Center 1321 “Modeling and Targeting Pancreatic Cancer” to Hana Algül; SFB824 Z2 to Katja Steiger), the Deutsche Krebshilfe (grant 111646 to Hana Algül), a Ramon y Cajal Merit Award from the Ministerio de Economía y Competitividad, Spain (to Bruno Sainz Jr), a Coordinated Grant from Fundación Asociación Española Contra el Cáncer (GC16173694BARB to Bruno Sainz Jr), funding from The Fero Foundation (to Bruno Sainz Jr), and a Proyecto de Investigacion de Salud, ISCIII, Spain (no. PI18/00757 to Bruno Sainz Jr). Jiaoyu Ai is supported by the “China Scholarship Council” grant program

    Surgery and the kings of medical science

    No full text
    Background!#!Surgeons are frequently compared in terms of their publication activity to members of other disciplines who publish in journals with naturally higher impact factors. The time intensity of daily clinical duties in surgery is yet not comparable to that of these competitor disciplines.!##!Purpose!#!Here, we aimed to critically comment on ways for improving the academic productivity of university surgerons.!##!Conclusions!#!To ensure high-quality science in surgery, it is imperative that surgeons actively ask for and generate the time for high-quality research. This necessitates coordinated and combined efforts of leading university surgeons at the political level and effective presentation of the magnificent studies performed by young and talented university surgeons
    corecore