33 research outputs found

    Dimerization of Tetherin Is Not Essential for Its Antiviral Activity against Lassa and Marburg Viruses

    Get PDF
    Tetherin (also known as BST2, CD317 or HM1.24) has recently been reported to inhibit a wide range of viruses. However, the antiviral mechanism of action of tetherin has not been determined. Both ends of the tetherin molecule are associated with the plasma membrane and it forms a homodimer. Therefore, a model in which progeny virions are retained on the cell surface by dimer formation between tetherin molecules on the viral envelope and plasma membrane has been proposed as the antiviral mechanism of action of this molecule. To investigate this possibility, we examined the correlation between dimerization and antiviral activity of tetherin in Lassa and Marburg virus-like particle production systems using tetherin mutants deficient in dimer formation. However, the tetherin mutant with complete loss of dimerization activity still showed apparent antiviral activity, indicating that dimerization of tetherin is not essential for its antiviral activity. This suggests that tetherin retains progeny virions on the cell surface by a mechanism other than dimerization

    Efficient Production of HIV-1 Virus-Like Particles from a Mammalian Expression Vector Requires the N-Terminal Capsid Domain

    Get PDF
    It is now well accepted that the structural protein Pr55Gag is sufficient by itself to produce HIV-1 virus-like particles (VLPs). This polyprotein precursor contains different domains including matrix, capsid, SP1, nucleocapsid, SP2 and p6. In the present study, we wanted to determine by mutagenesis which region(s) is essential to the production of VLPs when Pr55Gag is inserted in a mammalian expression vector, which allows studying the protein of interest in the absence of other viral proteins. To do so, we first studied a minimal Pr55Gag sequence called Gag min that was used previously. We found that Gag min fails to produce VLPs when expressed in an expression vector instead of within a molecular clone. This failure occurs early in the cell at the assembly of viral proteins. We then generated a series of deletion and substitution mutants, and examined their ability to produce VLPs by combining biochemical and microscopic approaches. We demonstrate that the matrix region is not necessary, but that the efficiency of VLP production depends strongly on the presence of its basic region. Moreover, the presence of the N-terminal domain of capsid is required for VLP production when Gag is expressed alone. These findings, combined with previous observations indicating that HIV-1 Pr55Gag-derived VLPs act as potent stimulators of innate and acquired immunity, make the use of this strategy worth considering for vaccine development

    Cloning and Characterization of the Antiviral Activity of Feline Tetherin/BST-2

    Get PDF
    Human Tetherin/BST-2 has recently been identified as a cellular antiviral factor that blocks the release of various enveloped viruses. In this study, we cloned a cDNA fragment encoding a feline homolog of Tetherin/BST-2 and characterized the protein product. The degree of amino acid sequence identity between human Tetherin/BST-2 and the feline homolog was 44.4%. Similar to human Tetherin/BST-2, the expression of feline Tetherin/BST-2 mRNA was inducible by type I interferon (IFN). Exogenous expression of feline Tetherin/BST-2 efficiently inhibited the release of feline endogenous retrovirus RD-114. The extracellular domain of feline Tetherin/BST-2 has two putative N-linked glycosylation sites, N79 and N119. Complete loss of N-linked glycosylation by introduction of mutations into both sites resulted in almost complete abolition of its antiviral activity. In addition, feline Tetherin/BST-2 was insensitive to antagonism by HIV-1 Vpu, although the antiviral activity of human Tetherin/BST-2 was antagonized by HIV-1 Vpu. Our data suggest that feline Tetherin/BST-2 functions as a part of IFN-induced innate immunity against virus infection and that the induction of feline Tetherin/BST-2 in vivo may be effective as a novel antiviral strategy for viral infection

    The p12 Domain Is Unstructured in a Murine Leukemia Virus p12-CAN Gag Construct

    Get PDF
    The Gag polyproteins of gammaretroviruses contain a conserved p12 domain between MA and CA that plays critical roles in virus assembly, reverse transcription and nuclear integration. Here we show using nuclear magnetic resonance, that p12 is unstructured in a Moloney murine leukemia virus (MMLV) Gag fragment that includes the N-terminal domain of CA (p12-CAN). Furthermore, no long range interactions were observed between the domains, as has been previously predicted. Flexibility appears to be a common feature of Gag “late” domains required for virus release during budding. Residues near the N-terminus of CAN that form a β-hairpin in the mature CA protein are unfolded in p12-CAN, consistent with proposals that hairpin formation helps trigger capsid assembly

    Rescue of HIV-1 Release by Targeting Widely Divergent NEDD4-Type Ubiquitin Ligases and Isolated Catalytic HECT Domains to Gag

    Get PDF
    Retroviruses engage the ESCRT pathway through late assembly (L) domains in Gag to promote virus release. HIV-1 uses a PTAP motif as its primary L domain, which interacts with the ESCRT-I component Tsg101. In contrast, certain other retroviruses primarily use PPxY-type L domains, which constitute ligands for NEDD4-type ubiquitin ligases. Surprisingly, although HIV-1 Gag lacks PPxY motifs, the release of HIV-1 L domain mutants is potently enhanced by ectopic NEDD4-2s, a native isoform with a naturally truncated C2 domain that appears to account for the residual titer of L domain-defective HIV-1. The reason for the unique potency of the NEDD4-2s isoform has remained unclear. We now show that the naturally truncated C2 domain of NEDD4-2s functions as an autonomous Gag-targeting module that can be functionally replaced by the unrelated Gag-binding protein cyclophilin A (CypA). The residual C2 domain of NEDD4-2s was sufficient to transfer the ability to stimulate HIV-1 budding to other NEDD4 family members, including the yeast homologue Rsp5, and even to isolated catalytic HECT domains. The isolated catalytic domain of NEDD4-2s also efficiently promoted HIV-1 budding when targeted to Gag via CypA. We conclude that the regions typically required for substrate recognition by HECT ubiquitin ligases are all dispensable to stimulate HIV-1 release, implying that the relevant target for ubiquitination is Gag itself or can be recognized by divergent isolated HECT domains. However, the mere ability to ubiquitinate Gag was not sufficient to stimulate HIV-1 budding. Rather, our results indicate that the synthesis of K63-linked ubiquitin chains is critical for ubiquitin ligase-mediated virus release

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    FOXP in Tetrapoda: Intrinsically Disordered Regions, Short Linear Motifs and their evolutionary significance

    Get PDF
    Abstract The FOXP subfamily is probably the most extensively characterized subfamily of the forkhead superfamily, playing important roles in development and homeostasis in vertebrates. Intrinsically disorder protein regions (IDRs) are protein segments that exhibit multiple physical interactions and play critical roles in various biological processes, including regulation and signaling. IDRs in proteins may play an important role in the evolvability of genetic systems. In this study, we analyzed 77 orthologous FOXP genes/proteins from Tetrapoda, regarding protein disorder content and evolutionary rate. We also predicted the number and type of short linear motifs (SLIMs) in the IDRs. Similar levels of protein disorder (approximately 70%) were found for FOXP1, FOXP2, and FOXP4. However, for FOXP3, which is shorter in length and has a more specific function, the disordered content was lower (30%). Mammals showed higher protein disorders for FOXP1 and FOXP4 than non-mammals. Specific analyses related to linear motifs in the four genes showed also a clear differentiation between FOXPs in mammals and non-mammals. We predicted for the first time the role of IDRs and SLIMs in the FOXP gene family associated with possible adaptive novelties within Tetrapoda. For instance, we found gain and loss of important phosphorylation sites in the Homo sapiens FOXP2 IDR regions, with possible implication for the evolution of human speech
    corecore