82 research outputs found

    Kinetics of macroion coagulation induced by multivalent counterions

    Full text link
    Due to the strong correlations between multivalent counterions condensed on a macroion, the net macroion charge changes sign at some critical counterion concentration. This effect is known as the charge inversion. Near this critical concentration the macroion net charge is small. Therefore, short range attractive forces between macroions dominate Coulomb repulsion and lead to their coagulation. The kinetics of macroion coagulation in this range of counterion concentrations is studied. We calculate the Coulomb barrier between two approaching like charged macroions at a given counterion concentration. Two different macroion shapes (spherical and rod-like) are considered. A new "self-regulated" regime of coagulation is found. As the size of aggregates increases, their charge and Coulomb barrier also grow and diminish the sticking probability of aggregates. This leads to a slow, logarithmic increase of the aggregate size with time.Comment: Some formulas correcte

    Rejection of the hypothesis that Markarian 501 TeV photons are pure Bose-Einstein condensates

    Full text link
    The energy spectrum of the Blazar type galaxy Markarian 501 (Mrk 501) as measured by the High-Energy-Gamma-Ray Astronomy (HEGRA) air Cerenkov telescopes extends beyond 16 TeV and constitutes the most energetic photons observed from an extragalactic object. A fraction of the emitted spectrum is possibly absorbed in interactions with low energy photons of the diffuse extragalactic infrared radiation, which in turn offers the unique possibility to measure the diffuse infrared radiation density by TeV spectroscopy. The upper limit on the density of the extragalactic infrared radiation derived from the TeV observations imposes constraints on models of galaxy formation and stellar evolution. One of the recently published ideas to overcome severe absorption of TeV photons is based upon the assumption that sources like Mrk 501 could produce Bose-Einstein condensates of coherent photons. The condensates would have a higher survival probability during the transport in the diffuse radiation field and could mimic TeV air shower events. The powerful stereoscopic technique of the HEGRA air Cerenkov telescopes allows to test this hypothesis by reconstructing the penetration depths of TeV air shower events: Air showers initiated by Bose-Einstein condensates are expected to reach the maximum of the shower development in the atmosphere earlier than single photon events. By comparing the energy-dependent penetration depths of TeV photons from Mrk 501 with those from the TeV standard-candle Crab Nebula and simulated air shower events, we can reject the hypothesis that TeV photons from Mrk 501 are pure Bose-Einstein condensates.Comment: 9 pages, 2 figures, published by ApJ Letters, revised version (simulation results added

    The unidentified TeV source (TeVJ2032+4130) and surrounding field: Final HEGRA IACT-System results

    Get PDF
    The unidentified TeV source in Cygnus is now confirmed by follow-up observations from 2002 with the HEGRA stereoscopic system of Cherenkov Telescopes. Using all data (1999 to 2002) we confirm this new source as steady in flux over the four years of data taking, extended with radius 6.2 arcmin (+-1.2 arcmin (stat) +-0.9 arcmin (sys)) and exhibiting a hard spectrum with photon index -1.9. It is located in the direction of the dense OB stellar association, Cygnus OB2. Its integral flux above energies E>1 TeV amounts to \~5% of the Crab assuming a Gaussian profile for the intrinsic source morphology. There is no obvious counterpart at radio, optical nor X-ray energies, leaving TeVJ2032+4130 presently unidentified. Observational parameters of this source are updated here and some astrophysical discussion is provided. Also included are upper limits for a number of other interesting sources in the FoV, including the famous microquasar Cygnus X-3.Comment: 7 pages, 3 figures. Accepted for publication in Astronomy & Astrophysic

    Evidence for TeV gamma ray emission from Cassiopeia A

    Get PDF
    232 hours of data were accumulated from 1997 to 1999, using the HEGRA Stereoscopic Cherenkov Telescope System to observe the supernova remnant Cassiopeia A. TeV gamma ray emission was detected at the 5 sigma level, and a flux of (5.8 +- 1.2(stat) +- 1.2(syst)) 10^(-9) ph m^(-2) s^(-1) above 1 TeV was derived. The spectral distribution is consistent with a power law with a differential spectral index of -2.5 +- 0.4(stat) +- 0.1(syst) between 1 and 10 TeV. As this is the first report of the detection of a TeV gamma ray source on the "centi-Crab" scale, we present the analysis in some detail. Implications for the acceleration of cosmic rays depend on the details of the source modeling. We discuss some important aspects in this paper.Comment: 9 pages, 6 figures, accepted for publication in Astronomy & Astrophysic

    A study of Tycho's SNR at TeV energies with the HEGRA CT-System

    Get PDF
    Tycho's supernova remnant (SNR) was observed during 1997 and 1998 with the HEGRA Cherenkov Telescope System in a search for gamma-ray emission at energies above ~1 TeV. An analysis of these data, ~65 hours in total, resulted in no evidence for TeV gamma-ray emission. The 3sigma upper limit to the gamma-ray flux (>1 TeV) from Tycho is estimated at 5.78x10^{-13} photons cm^{-2} s^{-1}, or 33 milli-Crab. We interpret our upper limit within the framework of the following scenarios: (1) that the observed hard X-ray tail is due to synchrotron emission. A lower limit on the magnetic field within Tycho may be estimated B>=22 microG, assuming that the RXTE-detected X-rays were due to synchrotron emission. However, using results from a detailed model of the ASCA emission, a more conservative lower limit B>=6 microG is derived. (2) the hadronic model of Drury, Aharonian & Voelk, and (3) the more recent time-dependent kinetic theory of Berezhko & Voelk. Our upper limit lies within the range of predicted values of both hadronic models, according to uncertainties in physical parameters of Tycho, and shock acceleration details. In the latter case, the model was scaled to suit the parameters of Tycho and re-normalised to account for a simplification of the original model. We find that we cannot rule out Tycho as a potential contributor at an average level to the Galactic cosmic-ray flux.Comment: 9 pages, 6 figures. Accepted for publication in Astronomy and Astrophysic

    Is the giant radio galaxy M 87 a TeV gamma-ray emitter?

    Get PDF
    For the first time an excess of photons above an energy threshold of 730 GeV from the giant radio galaxy M 87 has been measured at a significance level above 4 σ. The data have been taken during the years 1998 and 1999 with the HEGRA stereoscopic system of 5 imaging atmospheric Cherenkov telescopes. The excess of 107.4 ± 26.8 events above 730 GeV corresponds to an integral flux of 3.3% of the Crab flux or Nγ (E > 730 GeV) = (0.96 ± 0.23) × 10-12 phot cm-2 s-1. M 87 is located at the center of the Virgo cluster of galaxies at a relatively small redshift of z = 0.00436 and is a promising candidate among the class of giant radio galaxies for the emission of TeV γ-radiation. The detection of TeV γ-rays from M 87 - if confirmed - would establish a new class of extragalactic source in this energy regime since all other AGN detected to date at TeV energies are BL Lac type objects.F. A. Aharonian ...G. P. Rowell...et al

    Observations of H1426+428 with HEGRA -- Observations in 2002 and reanalysis of 1999&2000 data

    Get PDF
    The HEGRA system of imaging air Cherenkov telescopes has been used to observe the BL Lac object H1426+428 (z=0.129z=0.129) for 217.5 hours in 2002. In this data set alone, the source is detected at a confidence level of 5.3 σ5.3~\sigma, confirming this object as a TeV source. The overall flux level during the observations in 2002 is found to be a factor of 2.5\approx 2.5 lower than during the previous observations by HEGRA in 1999&2000. A new spectral analysis has been carried out, improving the signal-to-noise ratio at the expense of a slightly increased systematic uncertainty and reducing the relative energy resolution to ΔE/E12\Delta E/E\le 12 % over a wide range of energies. The new method has also been applied to the previously published data set taken in 1999 and 2000, confirming the earlier claim of a flattening of the energy spectrum between 1 and 5 TeV. The data set taken in 2002 shows again a signal at energies above 1 TeV. We combine the energy spectra as determined by the CAT and VERITAS groups with our reanalyzed result of the 1999&2000 data set and apply a correction to account for effects of absorption of high energy photons on extragalactic background light in the optical to mid infrared band. The shape of the inferred source spectrum is mostly sensitive to the characteristics of the extragalactic background light between wavelengths of 1 and 15~μ\mumComment: 12 pages, 4 Figures, submitted to A&

    A search for TeV gamma-ray emission from SNRs, pulsars and unidentified GeV sources in the Galactic plane in the longitude range between -2 deg and 85 deg

    Full text link
    Using the HEGRA system of imaging atmospheric Cherenkov telescopes, one quarter of the Galactic plane (-2 deg < l < 85 deg) was surveyed for TeV gamma-ray emission from point sources and moderately extended sources (diameter <= 0.8 deg). The region covered includes 86 known pulsars (PSR), 63 known supernova remnants (SNR) and nine GeV sources, representing a significant fraction of the known populations. No evidence for emission of TeV gamma radiation was detected, and upper limits range from 0.15 Crab units up to several Crab units, depending on the observation time and zenith angles covered. The ensemble sums over selected SNR and pulsar subsamples and over the GeV-sources yield no indication for emission from these potential sources. The upper limit for the SNR population is at the level of 6.7% of the Crab flux and for the pulsar ensemble at the level of 3.6% of the Crab flux.Comment: 10 pages, 5 figures, 4 tables, accepted for publication in A&

    VERITAS Upper Limit on the VHE Emission from the Radio Galaxy NGC 1275

    Full text link
    The recent detection by the Fermi gamma-ray space telescope of high-energy gamma-rays from the radio galaxy NGC 1275 makes the observation of the very high energy (VHE: E > 100 GeV) part of its broadband spectrum particularly interesting, especially for the understanding of active galactic nuclei (AGN) with misaligned multi-structured jets. The radio galaxy NGC 1275 was recently observed by VERITAS at energies above 100 GeV for about 8 hours. No VHE gamma-ray emission was detected by VERITAS from NGC 1275. A 99% confidence level upper limit of 2.1% of the Crab Nebula flux level is obtained at the decorrelation energy of approximately 340 GeV, corresponding to 19% of the power-law extrapolation of the Fermi Large Area Telescope (LAT) result.Comment: Accepted for publication in ApJ Letter
    corecore