71 research outputs found

    The expansion of stripped-envelope stars:Consequences for supernovae and gravitational-wave progenitors

    Get PDF
    Massive binaries that merge as compact objects are the progenitors of gravitational-wave sources. Most of these binaries experience one or more phases of mass transfer, during which one of the stars loses part or all of its outer envelope and becomes a stripped-envelope star. The evolution of the size of these stripped stars is crucial in determining whether they experience further interactions and their final fate. We present new calculations of stripped-envelope stars based on binary evolution models computed with MESA. We use these to investigate their radius evolution as a function of mass and metallicity. We further discuss their pre-supernova observable characteristics and potential consequences of their evolution on the properties of supernovae from stripped stars. At high metallicity we find that practically all of the hydrogen-rich envelope is removed, in agreement with earlier findings. Only progenitors with initial masses below 10\Msun expand to large radii (up to 100\Rsun), while more massive progenitors stay compact. At low metallicity, a substantial amount of hydrogen remains and the progenitors can, in principle, expand to giant sizes (> 400\Rsun), for all masses we consider. This implies that they can fill their Roche lobe anew. We show that the prescriptions commonly used in population synthesis models underestimate the stellar radii by up to two orders of magnitude. We expect that this has consequences for the predictions for gravitational-wave sources from double neutron star mergers, in particular for their metallicity dependence.Comment: Main text 17 pages, 7 figures, accepted for publication in Astronomy & Astrophysic

    Binary-stripped Stars as Core-collapse Supernovae Progenitors

    Get PDF
    Most massive stars experience binary interactions in their lifetimes that can alter both the surface and core structure of the stripped star with significant effects on their ultimate fate as core-collapse supernovae. However, core-collapse supernovae simulations to date have focused almost exclusively on the evolution of single stars. We present a systematic simulation study of single and binary-stripped stars with the same initial mass as candidates for core-collapse supernovae (11–21 M⊙). Generally, we find that binary-stripped stars core tend to have a smaller compactness parameter, with a more prominent, deeper silicon/oxygen interface, and explode preferentially to the corresponding single stars of the same initial mass. Such a dichotomy of behavior between these two modes of evolution would have important implications for supernovae statistics, including the final neutron star masses, explosion energies, and nucleosynthetic yields. Binary-stripped remnants are also well poised to populate the possible mass gap between the heaviest neutron stars and the lightest black holes. Our work presents an improvement along two fronts, as we self-consistently account for the pre-collapse stellar evolution and the subsequent explosion outcome. Even so, our results emphasize the need for more detailed stellar evolutionary models to capture the sensitive nature of explosion outcome

    Observational predictions for Thorne-\.Zytkow objects

    Full text link
    Thorne-Z˙\.Zytkow objects (TZ˙\.ZO) are potential end products of the merger of a neutron star with a non-degenerate star. In this work, we have computed the first grid of evolutionary models of TZ˙\.ZOs with the MESA stellar evolution code. With these models, we predict several observational properties of TZ˙\.ZOs, including their surface temperatures and luminosities, pulsation periods, and nucleosynthetic products. We expand the range of possible TZ˙\.ZO solutions to cover 3.45â‰Člog⁥(T/K)â‰Č3.653.45 \lesssim \log \left(T/K\right) \lesssim 3.65 and 4.85â‰Člog⁥(L/L⊙)â‰Č5.54.85 \lesssim \log \left(L/L_{\odot}\right) \lesssim 5.5. Due to the much higher densities our TZ˙\.ZOs reach compared to previous models, if TZ˙\.ZOs form we expect them to be stable over a larger mass range than previously predicted, without exhibiting a gap in their mass distribution. Using the GYRE stellar pulsation code we show that TZ˙\.ZOs should have fundamental pulsation periods of 1000--2000 days, and period ratios of ≈\approx0.2--0.3. Models computed with a large 399 isotope fully-coupled nuclear network show a nucleosynthetic signal that is different to previously predicted. We propose a new nucleosynthetic signal to determine a star's status as a TZ˙\.ZO: the isotopologues 44TiO2^{44}\rm{Ti} \rm{O}_2 and 44TiO^{44}\rm{Ti} \rm{O}, which will have a shift in their spectral features as compared to stable titanium-containing molecules. We find that in the local Universe (~SMC metallicities and above) TZ˙\.ZOs show little heavy metal enrichment, potentially explaining the difficulty in finding TZ˙\.ZOs to-date.Comment: 17 pages, 16 figures, 3 Tables, Sumbitedd to MNRAS, Zenodo data available https://doi.org/10.5281/zenodo.453442

    Sensitivity of the lower-edge of the pair instability black hole mass gap to the treatment of time dependent convection

    Get PDF
    Gravitational-wave detections are now probing the black hole (BH) mass distribution, including the predicted pair-instability mass gap. These data require robust quantitative predictions, which are challenging to obtain. The most massive BH progenitors experience episodic mass ejections on timescales shorter than the convective turn-over timescale. This invalidates the steady-state assumption on which the classic mixing-length theory relies. We compare the final BH masses computed with two different versions of the stellar evolutionary code \texttt{MESA}: (i) using the default implementation of \cite{paxton:18} and (ii) solving an additional equation accounting for the timescale for convective deceleration. In the second grid, where stronger convection develops during the pulses and carries part of the energy, we find weaker pulses. This leads to lower amounts of mass being ejected and thus higher final BH masses of up to ∌\sim\,5 M⊙5\,M_\odot. The differences are much smaller for the progenitors which determine the maximum mass of BHs below the gap. This prediction is robust at MBH,max≃48 M⊙M_{\rm BH, max}\simeq 48\,M_\odot, at least within the idealized context of this study. This is an encouraging indication that current models are robust enough for comparison with the present-day gravitational-wave detections. However, the large differences between individual models emphasize the importance of improving the treatment of convection in stellar models, especially in the light of the data anticipated from the third generation of gravitational wave detectors.Comment: 7 pages + 1 appendix, accepted in MNRAS, online results at https://zenodo.org/record/340632

    Predictions for the hydrogen-free ejecta of pulsational pair-instability supernovae

    Full text link
    Present time-domain astronomy efforts will unveil a variety of rare transients. We focus here on pulsational pair-instability evolution, which can result in signatures observable with electromagnetic and gravitational waves. We simulate grids of bare helium stars to characterize the resulting black hole (BH) masses and ejecta composition, velocity, and thermal state. The stars do not react "elastically" to the thermonuclear explosion: there is not a one-to-one correspondence between pair-instability driven ignition and mass ejections, causing ambiguity in what is an observable pulse. In agreement with previous studies, we find that for carbon-oxygen core masses 28Msun< M_CO<30.5Msun the explosions are not strong enough to affect the surface. With increasing mass, they first cause large radial expansion (30.5Msun<M_CO<31.4Msun), and finally, also mass ejection episodes (M_CO>31.4Msun). The lowest mass to be fully disrupted in a pair-instability supernova is M_CO=57Msun. Models with M_CO>121Msun reach the photodisintegration regime, resulting in BHs with M_BH>125Msun. If the pulsating models produce BHs via (weak) explosions, the previously-ejected material might be hit by the blast wave. We characterize the H-free circumstellar material from the pulsational pair-instability of helium cores assuming simply that the ejecta maintain a constant velocity after ejection. Our models produce He-rich ejecta with mass 10^{-3}Msun<M_CSM<40Msun. These ejecta are typically launched at a few thousand \kms and reach distances of ~10^{12}-10^{15} cm before core-collapse. The delays between mass ejection events and the final collapse span a wide and mass-dependent range (from sub-hour to 10^4 years), and the shells ejected can also collide with each other. The range of properties we find suggests a possible connection with (some) type Ibn supernovae.Comment: accepted versio
    • 

    corecore