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ABSTRACT
Gravitational-wave detections are now probing the black hole (BH) mass distribution, including
the predicted pair-instability mass gap. These data require robust quantitative predictions,
which are challenging to obtain. The most massive BH progenitors experience episodic mass
ejections on time-scales shorter than the convective turnover time-scale. This invalidates the
steady-state assumption on which the classic mixing length theory relies. We compare the final
BH masses computed with two different versions of the stellar evolutionary code MESA: (i)
using the default implementation of Paxton et al. (2018) and (ii) solving an additional equation
accounting for the time-scale for convective deceleration. In the second grid, where stronger
convection develops during the pulses and carries part of the energy, we find weaker pulses.
This leads to lower amounts of mass being ejected and thus higher final BH masses of up to
∼5 M�. The differences are much smaller for the progenitors that determine the maximum
mass of BHs below the gap. This prediction is robust at MBH,max � 48 M�, at least within
the idealized context of this study. This is an encouraging indication that current models are
robust enough for comparison with the present-day gravitational-wave detections. However,
the large differences between individual models emphasize the importance of improving the
treatment of convection in stellar models, especially in the light of the data anticipated from
the third generation of gravitational-wave detectors.
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1 IN T RO D U C T I O N

One of the most challenging aspects of simulating the interior
evolution of stars is the treatment of convection (e.g. Renzini 1987;
Arnett et al. 2019; Buldgen 2019). The development of convective
motion in highly stratified media is an inherently multidimensional
problem, which involves turbulence. Spherically symmetric stellar
models typically rely on the mixing length theory (MLT; Böhm-
Vitense 1958), which provides an averaged description of subsonic,
steady-state convection. Albeit with many well-known caveats,
MLT is often a sufficient description for the energy transport
and chemical mixing provided by convection. This is because the

� E-mail: mrenzo@flatironinstitute.org

evolutionary time-scale of a star is typically much longer than
the convective turnover time-scale: within a single time step it is
reasonable to assume that the steady state described by MLT can be
achieved in the convective layers.

However, some stars can experience dynamical phases of evo-
lution that are too short for convection to achieve the steady state
described by MLT. One relevant example is the calculation of the
spectrum of asteroseismological pulsations for stars with convective
envelopes (e.g. Unno 1967; Gough 1977). Cases where the short
evolutionary time-scale might influence the stellar structure include
the helium flash (e.g. Nomoto & Sugimoto 1977) and more generally
any explosive thermonuclear ignition that can drive convection (e.g.
Nomoto, Thielemann & Yokoi 1984; Nomoto 1987; Takahashi,
Yoshida & Umeda 2013), very late evolutionary phases of massive
star evolution (e.g. Couch et al. 2015; Chatzopoulos et al. 2016),
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dynamically unstable mass transfer from a convective donor star
(e.g. Lauterborn & Weigert 1972; Paczyński & Sienkiewicz 1972),
and stellar explosions (e.g. Couch & Ott 2013). In these situations,
the time dependence of convection can become important, and stel-
lar evolution calculations typically lack a first principles model for
the convective acceleration. Sometimes, the convective acceleration
due to buoyancy is limited to a fraction of the local gravitational
acceleration to prevent unphysically large accelerations (e.g. Arnett
1969; Wood 1974).

Here, we focus on a timely example of a situation in which the
time dependence of convection can be important: the evolution
of very massive stars experiencing pulsational pair instability
(PPI; Fowler & Hoyle 1964; Barkat, Rakavy & Sack 1967).
Because of the large mass required to encounter this instability,
it is expected to be a rare phenomenon in nature, but the recent
detection of black holes (BHs) with masses 30 � MBH � 50 M�
(Abbott et al. 2019a) has driven the interest in understanding the
evolution of the most massive (stellar) BH progenitors. To fully
harvest the information carried by gravitational waves and use it to
constrain stellar evolution, we need to have robust stellar models and
characterize their sensitivity to uncertain ingredients (e.g. Farmer
et al. 2016, 2019; Renzo et al. 2017; Davis, Jones & Herwig 2019).

Stars that develop helium (He) core masses exceeding MHe �
30 M� are predicted to encounter the PPI and shed significant
amounts of mass in subsequent pulsation episodes (e.g. Rakavy &
Shaviv 1967; Yoshida et al. 2016; Woosley 2017, 2019; Takahashi
2018; Leung, Nomoto & Blinnikov 2019; Marchant et al. 2019).
The amount of mass lost in these pulses, together with the previous
wind mass loss, determines the mass distribution of BHs formed.
Increasing further to MHe � 60 M�, the instability becomes so
violent that the entire star is disrupted in a pair-instability supernova
(PISN; Barkat et al. 1967; Fraley 1968), without leaving any
compact remnant. For MHe � 135 M�, all the energy released by
the thermonuclear explosion is used to photodisintegrate the newly
formed nuclei, instead of accelerating the stellar gas, and BH
formation resumes (e.g. Bond, Arnett & Carr 1984). Thus, PISNe
are expected to carve a gap in the BH mass distribution.

Numerical simulations of the PPI evolution require following
hydrodynamical phases in between phases of hydrostatic equilib-
rium. This can be done alternating the use of two different codes
(e.g. Chatzopoulos & Wheeler 2012; Chatzopoulos, Wheeler &
Couch 2013; Yoshida et al. 2016; Takahashi 2018), which however
limits the number of pulsational events that can be followed. To
the best of our knowledge, two hydrodynamic Lagrangian stellar
evolution codes can now follow the evolution of such massive stars.
Woosley (2017, 2019) presented the first grids of stellar models
computed with the KEPLER code (Weaver, Zimmerman & Woosley
1978), building upon pre-existing models computed with the same
code (Woosley, Heger & Weaver 2002; Woosley, Blinnikov & Heger
2007). Recently, Marchant et al. (2019), Farmer et al. (2019), Renzo
et al. (2020), and Leung et al. (2019) used two different implementa-
tions of hydrodynamics in the open-source code MESA (Paxton et al.
2011, 2013, 2015, 2018, 2019) to simulate the evolution of PPI.

Several authors have noted that the amount of mass lost is
sensitive to the treatment of convection, both before and during
the pulses (e.g. Woosley 2017; Leung et al. 2019; Marchant et al.
2019). Here, we compare two grids of massive bare He core models
to highlight the differences resulting from variations in the treatment
of time-dependent convection. In one of our grids, convection is
treated similarly to Paxton et al. (2018) and Leung et al. (2019),
while the other grid follows the approach used in Marchant et al.
(2019, hereafter M19) and Farmer et al. (2019). In Section 3.1,

we present the BH masses from both grids. In Section 3.2, we
illustrate the differences in internal structure using two pairs of
example stellar models. Section 4 compares the two treatments of
time-dependent convection adopted here to other implementations
existing in the literature and summarizes the main limitations of this
study. We discuss the implications of our results in Section 5.

We do not aim at solving a problem that has remained in
stellar astrophysics for several decades, but hope to stimulate
improvements in stellar evolution models that also account for the
time-dependent behaviour of convective motion.

2 ME T H O D S

We use the open-source stellar evolution code MESA to simulate
the evolution of bare He cores at metallicity Z = 0.001 with
masses in the range 25 ≤ MHe ≤ 70 M�. All our input files are
available at http://cococubed.asu.edu/mesa market/inlists.html, and
our models are available at doi:10.5281/zenodo.3406320. We track
the energy generation with the 22-isotope nuclear reaction network
APPROX21 PLUS CO56.NET. Slightly before the star becomes dy-
namically unstable, i.e. the pressure-weighted volumetric averaged
adiabatic index approaches 4/3 (e.g. Stothers 1999),

〈�1〉 def=
∫

�1P d3r∫
P d3r

≡
∫

�1
P
ρ

dm∫
P
ρ

dm
� 4

3
, (1)

we employ the Harten–Lax–van Leer with contact (HLLC) Riemann
solver in MESA1 (Toro, Spruce & Speares 1994), without relying
on artificial viscosity to capture shocks. After a dynamical pulse,
if/once the core has recovered hydrostatic equilibrium, we create a
new stellar model of reduced mass with the entropy and chemical
profile of the bound material. We do not include any wind mass
loss, although the treatment of winds is known to influence the
core structure of massive stars (Renzo et al. 2017). Preliminary
tests including wind mass loss showed the same trends discussed
here. The impact of uncertainties related to winds and other input
physics on our PPI models is studied in Farmer et al. (2019). Tests
to ensure the robustness of our models against spatial and temporal
discretization are discussed in (Farmer et al. 2019; M19; Renzo et al.
2020). We refer the interested readers to M19 for a full description
of our set-up. Here, we focus only on the treatment of convection.

We adopt the Ledoux criterion for convective stability with
a mixing length parameter αMLT = 2.0 and an exponential un-
der/overshooting with (F,F 0) = (0.01,0.005) (cf. equation 2 in Pax-
ton et al. 2011). To test the sensitivity of our results to the treatment
of time-dependent convection, we compute two grids of models
using two different MESA versions. Other differences between the
two code versions might contribute to the variations described here.
Our first grid of models, which we refer to as the ‘classic MLT’ grid,
is computed using MESA version 10108. For this grid, the convective
velocity vc is obtained from MLT under the steady-state assumption,
similarly to Paxton et al. (2018) and Leung et al. (2019), although the
latter authors turn-off convection during hydrodynamical phases of
evolution. For this grid we employ MLT++, which is an enhance-
ment of the convective flux in superadiabatic radiation-pressure-
dominated regions prone to developing density inversions (Paxton
et al. 2013; Jiang et al. 2018) and a semiconvection efficiency of
0.01. We do not employ thermohaline mixing for numerical stability
reasons. After the onset of the hydrodynamic phase of evolution we

1Conversely, Leung et al. (2019) used the MESA implementation of artificial
viscosity (see also Paxton et al. 2015).
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PISN mass gap sensitivity to convection 4335

Figure 1. BH mass as a function of the He core mass for our two grids. The colour shading indicates the approximate boundaries between evolution to core
collapse (CC, blue), pulsational pair-instability mass loss �4 M� (PPI+CC, green), and full disruption in a PISN (yellow). The grey area in the inset panels
shows the systematic offset we find in the final BH masses from our two grids. The dashed red line indicates the maximum BH mass we find below the PISN
BH mass gap (white area in the bottom panel), which is not sensitive to the variations between our two grids of models.

enforce short time steps, therefore we apply a limit to the convective
acceleration based on Wood (1974) to avoid unphysical infinite
convective acceleration. This approach still allows for infinite
convective deceleration: if a stellar layer becomes radiatively stable,
the convective velocity is instantaneously set to zero.

We compute our second grid, which we refer to as the ‘time-
dependent deceleration’ grid, using MESA version 11123. In this
case, we obtain vc solving, together with the stellar structure and
composition equations, an equation designed to asymptotically give
the MLT value of vc over long time-scales, and to damp vc in
radiative regions over a characteristic buoyancy time-scale. The
equation we solve reads (cf. equations A1 and A2 in M19 and
equation 11 in Arnett 1969)

∂vc

∂t
=

{(
v2

MLT − v2
c

)
/λ for convectively unstable regions,

−v2
c /λ − Nvc for convectively stable regions,

(2)

where λ = αMLTHp is the mixing length, assumed to be proportional
through a free parameter αMLT to the local pressure scale height Hp,
N is the Brunt-Väisälä frequency, and vMLT is the MLT steady-state
convective velocity. In this second ‘time-dependent deceleration’
grid, we do not employ MLT++. Semiconvection and thermohaline
mixing are treated in the same way as in our ‘classic MLT’ grid.

These two implementations of time-dependent convection do
not exhaust all the possible choices (e.g. Unno 1967, see also
Section 4.1), but are sufficient to illustrate the qualitative and
quantitative differences that can be expected in computing the
evolution through PPI.

Our main parameter of interest is the resulting BH mass, which we
estimate using the mass coordinate where the gravitational binding

energy reaches 1048 erg. This allows for the possibility of mass loss
during the final core collapse from either a weak explosion (Kuroda
et al. 2018; Ott et al. 2018), energy loss to neutrinos, or ejection
of a fraction of the envelope caused by the latter (e.g. Nadezhin
1980; Lovegrove & Woosley 2013). This typically gives estimated
BH masses within a few 0.01 M� of the total baryonic mass slower
than the escape velocity at the onset of core collapse.

3 R ESULTS

3.1 Impact on the BH masses

Fig. 1 shows the BH masses resulting from our numerical ex-
periment. Dots show models from our ‘classic MLT’ grid, where
increases in vc are limited following Wood (1974) and the decreases
in vc are unlimited, while crosses mark the BH masses for models
in our ‘time-dependent deceleration’ grid, which uses equation (2).
The two inset panels emphasize the main differences found, which
could affect both the BH mass function and their detection rate in
gravitational-wave events.

The colours in Fig. 1 emphasize in blue the range of MHe

that collapse without any PPI-driven mass ejection (core collapse,
CC) and in green the PPI range, which we define here requiring
that PPI remove at least2 3 M�. The yellow region shows models
fully disrupted in a PISN. The boundary mass between PPI+CC

2Since we are concerned here with the features of the BH mass distribution,
rather than all the potential observable signatures of a PPI, see also Renzo
et al. (2020).
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Figure 2. Specific entropy as a function of mass when the average adiabatic index 〈�1〉 approaches 4/3 (top row) and at the onset of the final core collapse
(bottom row). Red solid lines are models from our ‘classic MLT’ grid, while thick blue dashed lines are models from our ‘time-dependent deceleration’ grid.
We show a 42 M� model representative of the behaviour of in the insets in Fig. 1 (left-hand column) and a 54 M� model representative of the progenitors of
the most massive BHs below the PISN mass gap (right-hand column).

behaviour and full disruption only shifts by ∼3 M� between our two
grids. This is smaller than variations induced by other uncertainties
(e.g. nuclear reaction rates and metallicity; Farmer et al. 2019).

The inset (a) of Fig. 1 magnifies the range at which PPI starts,
around MHe � 32 M�. This mass threshold for the occurrence of
thermonuclear explosions driven by the pair instability is in very
good agreement with Woosley (2017, 2019). The models from
our ‘time-dependent convective deceleration’ grid (crosses) show,
in this mass range, a one-to-one linear correspondence between
MHe and the BH mass. The occurrence of weak pulses does
not drive significant mass loss, blurring the boundary between
CC and PPI+CC evolution. Instead, the approach used in our
‘classic MLT’ grid produces stronger pulses at the low-mass end,
resulting in a turnover in MBH ≡ MBH(MHe). Since lower mass
He cores are expected to be more common, if the pulses of the
least massive stars experiencing PPI can remove a significant
amount of mass, then it might be possible to detect an overabun-
dance of BHs of mass corresponding roughly to the minimum
MHe for PPI.

The different amount of PPI mass loss for MHe � 45 M� results
in a systematic offset in the final BH masses of ∼5 M�, shown in
the inset (b) of Fig. 1, and highlighted by the grey background
in both inset panels. Models in the ‘time-dependent convective
deceleration’ grid generally produce more massive BHs, i.e. weaker
pulses. This offset might affect the mass-dependent binary BH
merger rate by changing which stars make BHs of a given mass. At
MHe � 45 M�, the ‘time-dependent deceleration’ grid shows hints
of a turnover qualitatively similar to the one at 32 M� for our ‘classic
MLT’ grid, cf. inset (a). This feature might produce a concentration
of BHs at the corresponding BH mass MBH � 43 M�.

The PISN BH mass gap (the first part of which is shown by
the white region in Fig. 1) starts above MBH � 48 M� for both
our grids, also in agreement with Woosley (2017, 2019). The
different treatment of time-dependent convection in our two grids
does not change the maximum BH mass below the PISN BH mass
gap significantly (red dashed line in Fig. 1), corroborating the
results of Farmer et al. (2019). For MHe � 45 M� the scatter in
BH masses increases, owing to the combination of more energetic
pulses and the lack of wind mass loss in both our grids. The
lack of winds, a situation possibly relevant for zero-metallicity
Population III stars, produces structures with sharp density drops:
these influence the propagation of shocks in the star and the amount
of mass they remove. From a computational perspective they result

in numerically less stable models. Wind mass loss (indirectly) and
multidimensional effects are likely to smooth these boundaries in
nature.

3.2 Illustrative examples

To illustrate the different internal evolution of the stars in our grids,
we focus here on two pairs of models, of 42 and 54 M�, respectively.
The first pair is representative of models in the insets of Fig. 1, the
second pair is representative of the progenitors of the most massive
BHs below the PISN gap.

Fig. 2 shows the specific entropy as a function of mass coordinate
for these models in the conventional units of Boltzmann’s constant
kB times Avogadro’s number NA. The specific entropy characterizes
the thermodynamic state of the gas, and it is therefore useful when
discussing thermal instabilities such as convection. Flat entropy
profiles are a signature of efficient convection.

For these models, the internal evolution is similar until the onset
of the first pulse and results in similar pre-pulse entropy profiles
(top panels). The behaviour of convective shells during the pulses
(i.e. when the star evolves on a dynamical time-scale) shows a
consistent difference in the two grids. This can lead to divergent
evolution and different entropy profiles and final BH masses (at
the lower mass end), or not be sufficient to cause large differences
in the final entropy profile or BH mass (for the more massive PPI
progenitors). The insets of Fig. 1 and the 42 M� models in left-hand
panels of Fig. 2 show examples where the pulses drive significant
differences. Conversely, the 54 M� models in the right-hand column
of Fig. 2 are an example where the differences in the convective
acceleration/deceleration are not sufficient to cause a different final
BH mass and entropy profile.

Fig. 3 shows the Kippenhahn diagrams for the 42 M� (top) and
54 M� (bottom) example models in our ‘time-dependent deceler-
ation’ (left-hand column) and ‘classic MLT’ (right-hand column)
grids. These illustrate the differences in convective patterns for our
two grids during the pulses.

The age of the stars at the start of the pulses differ by a few
thousand years, a difference that we do not consider significant given
other numerical differences unrelated to the treatment of convection
in our grids. The time range shown is larger by a factor of ∼30
in the models from the ‘time-dependent deceleration’ (right-hand
column), but corresponds to a smaller number of time steps. This is
because we can run with the hydrodynamics on for much longer and

MNRAS 493, 4333–4341 (2020)
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PISN mass gap sensitivity to convection 4337

Figure 3. Kippenhahn diagrams during the development and propagation of the first pulse for the 42 M� (top row) and 54 M� (bottom row) shown in Fig. 2.
The left-hand panels show the evolution for our ‘time-dependent deceleration’ approach, while the right-hand panels show the corresponding evolution for the
‘classic MLT’. ε = εnuc − εν is the energy generation rate from nuclear burning minus the neutrino losses, there is net energy release for the red and black
colours, and net energy loss for purple and blue colours. The green hatching indicates convective layers. The solid black line indicates the total mass of the
models. A fraction of it becomes unbound earlier than it is removed from the computational domain.

take longer time steps thanks to the improved numerical stability of
the ‘time-dependent deceleration’ grid (see also Appendix A).

The oxygen thermonuclear explosion during the first pulse
(roughly between model number ∼3000–6000) proceeds differently
in our two grids. In the ‘time-dependent deceleration’ models (left-
hand panels of Fig. 3), the oxygen ignition triggers convective
mixing (green hatched areas) during the main burning episode.
Convection remains in the intermediate layers of the star until
and beyond the ejection of mass. Conversely, in the ‘classic MLT’

models (right-hand panels of Fig. 3) the thermonuclear explosion of
oxygen is entirely radiative, and convection turns on only after the
main burning episode is over, as the pulse wave propagates outward.
As the core readjusts dynamically to the energy released, secondary
burning episodes are clearly visible in the 42 M� model in the top
right of Fig. 3.

We think that the different development of convection occurs
because at its onset, computational zones of the models tend to
oscillate between radiative stability and convective instability. In

MNRAS 493, 4333–4341 (2020)
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the ‘classic MLT’ grid, where infinite convective deceleration is
allowed, the convective velocity of such zones is reset to zero
each time they oscillate back to radiative stability. Conversely, in
the ‘time-dependent deceleration’ grid, such zones retain a non-
zero convective velocity. The instantaneous value of the energy
flux can thus vary between these two approaches, and this creates
a numerical degeneracy between the convective deceleration, the
onset of convection, and the mixing processes happening at the
boundary of the convective regions (including the treatment of
undershooting, semiconvection, and thermohaline mixing).

At the lower mass end of the PPI regime (for MHe � 45 M�), in
the ‘time-dependent deceleration’ grid, the presence of convection
during the main burning episode leads to efficient outward transport
of energy and until it can eventually be radiated away. Conversely,
in the ‘classic MLT’ grid (left-hand column of Fig. 3), where
convection does not develop as promptly, the energy released in the
thermonuclear explosion remains trapped in the star. Ultimately,
this energy contributes to the kinetic energy of the gas and results
in stronger mass ejections, producing the kink in inset (a) of Fig. 1
and the offset in inset (b).

The development of large convective shell during the outward
propagation of a pulse in the ‘time-dependent deceleration’ grids
can lead to the injection of helium into the hotter and deeper regions,
and consequently to a large increase in nuclear energy generation
rate within the convective region. However, the evolutionary time-
scale is set by the dynamical propagation of the pulse, and it is much
shorter than the nuclear time-scale. Therefore, while this burning
changes the chemical profile inside the star, it does not release an
amount of energy sufficient to modify significantly the dynamics of
the pulse propagation. Indeed, the amount of mass lost by both our
54 M� models (bottom row of Fig. 3) in the first pulse is similar, at
about 4 M�.

The lack of differences at the high-mass end happens because
the more massive progenitors experience fewer but more energetic
pulses (Woosley 2017; M19; Renzo et al. 2020) and these are
strong enough to develop and sustain convection regardless of which
algorithm is used. The two algorithms we compare differ for how
convection develops (and damps), but once convection is going on
they yield similar results. In either case, the energy released by the
thermonuclear explosion during a pulse exceeds the amount that
convection carries away. The remaining differences in the resulting
BH masses are smaller than those introduced by other physical
uncertainties (e.g. nuclear reaction rates and overshooting; Farmer
et al. 2019).

Consequently, the maximum BH mass below the PISN BH
mass gap, which is produced by models at the more massive end
(cf. Fig. 1), is robustly predicted at ∼48 M� for models that do not
experience wind mass loss (see also Farmer et al. 2019), and does
not depend on the treatment of the convective deceleration, at least
within the framework of our comparison.

4 D ISCUSSION

4.1 Other time-dependent treatments of convection

The treatment of convection is a computationally challenging aspect
of stellar evolution (e.g. Renzini 1987). The specific aspect we focus
on here is its time dependence, which becomes important when the
time-scale of interest for the star is comparable to, or shorter than,
the convective turnover time-scale.

Efforts to include the time dependence of convection in stellar
evolution calculations can be divided in two categories: (i) those

trying to capture time-dependent perturbations on a pre-existing
steady state described by MLT, and (ii) those concerned with the
growth (or damping) of the convective instability from the radiative
equilibrium (or from the MLT steady state). Examples of (i) are the
calculations of the eigenspectrum of stars with convective envelopes
(e.g. Unno 1967; Gough 1977, see also section 2 in Paxton et al.
2019). The algorithm developed by Unno (1967) in this context has
also been applied to the problem of the growth of the convective
instability (e.g. Nomoto & Sugimoto 1977; Takahashi et al. 2013).
Examples of (ii) are the algorithms of Wood (1974) and Arnett
(1969) on which our calculations are based.

The importance of convection in the context of PPI evolution was
investigated first by Fraley (1968), and has been underlined in many
studies since then (e.g. Woosley 2017; Farmer et al. 2019; Leung
et al. 2019; M19). Modern calculations of PPI evolution either
turn-off convection during the hydrodynamic phase of evolution
for numerical stability (e.g. Leung et al. 2019), implement a limit
on the convective acceleration based on the local gravitational
acceleration, leaving the convective deceleration unlimited (as in
our ‘classic MLT’ grid), or use an ad hoc equation to solve for
the convective velocity (see equation 2 that we use in our ‘time-
dependent deceleration’ grid; see also Farmer et al. 2019; M19;
Renzo et al. 2020). The last two approaches fall into the category
(ii) of dealing with how the steady state described by MLT develops,
and they differ mainly for the inclusion or lack of a time-scale for
the damping of convection. Our numerical experiments show that
changing the convective deceleration leads in a different onset of
the convective instability in our models.

Models based on the first approach (i) implicitly assume for
the convective velocity field the MLT value and compute small
and time-dependent perturbations to it (see also Gough 1977).
This is in principle not applicable to the case of PPI evolution,
where the convective instability grows as the star evolves and the
‘perturbation’ in the velocity is the convective velocity itself. A
comparison between these two classes of treatments is beyond the
scope of this study, although it would be interesting given the use
of the Unno (1967) algorithm in other cases where the relevant
problem is the growth of convection.

4.2 Further caveats

We have carried out several experiments to ensure the numerical
convergence with increasing spatial and temporal resolution of
our PPI models, as presented in appendix B of M19, in Farmer
et al. (2019), and appendix A of Renzo et al. (2020). Nevertheless,
we cannot exclude that the treatment of convection is numerically
degenerate with other minor differences in the two MESA versions
we employ here.

Of particular concern is the entrainment of the bottom edge of
the He-burning shell. In some of our models, this shell moves
downwards in mass coordinate, increasing the entropy of the outer
layers of the CO core, i.e. decreasing the total amount of mass at
low entropy. We find no clear trends in what determines whether
the burning shell penetrates downwards or not: this can happen in
models that do not experience PPI mass loss, but also in models
that later on undergo pulses. This can lead to differences in the pre-
pulse entropy profiles that are not driven by the different treatment
of the time dependence of convection, since they develop during
evolutionary phases when the star evolves on a much longer time-
scale than the convective turnover time-scale.

We suspect that this behaviour depends on the sharp density
and composition profiles we obtain in the absence of winds, and
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differences in the numerical set-up in the two MESAversions we
employ. We have also found that turning off convective under-
shooting or increasing the efficiency of semiconvective mixing3

can also influence this behaviour. Models computed with the ‘time-
dependent deceleration’ set-up but no undershooting result in BH
masses in between the values shown in Fig. 1.

Nevertheless, regardless of the behaviour of the He shell, the
development of convection during the dynamical phase of a pulse
always resembles what shown in Fig. 3. We expect that the
improvements in the treatment of convection are the main reason
for the differences, but we caution that we cannot exclude that
other minor differences contribute. We hope that cleaner numerical
experiments with improved models for the development/damping
of convection will become possible.

Finally, we emphasize that our calculations and the resulting
BH mass in Fig. 1 do not account for possible consequences of
binary interactions, as they are obtained from the evolution of
single He cores. Further work to assess how binarity can modify
the evolution through PPI is needed to interpret gravitational-wave
events assuming the isolated binary evolution scenario.

5 SU M M A RY A N D C O N C L U S I O N

The ongoing search for gravitational waves is starting to provide
direct constraints on the BH mass function and probe the theoreti-
cally predicted PISN BH mass gap (Fishbach & Holz 2017; Abbott
et al. 2019b; Stevenson et al. 2019). This offers an unprecedented
tool to understand the physics of their massive star progenitors. This
requires quantitative predictions from stellar models robust enough
for a sensible confrontation with the data. The variations in the
model predictions resulting from algorithmic choices or simplifying
assumptions should be small compared to the input physics that we
wish to test and the observational uncertainties.

We have compared the predictions for the final BH masses at
the lower edge of the predicted mass gap computed with two
different versions and set-ups of the stellar evolutionary code MESA,
which differ primarily in the treatment of the time dependence of
convection. Our ‘classic MLT’ grid adopts the defaults of Paxton
et al. (2018), while in our ‘time-dependent deceleration’ grid we
solve an additional equation incorporating the time-scale for the
damping of convection. Different groups have recently used set-ups
very similar to the two options we compare here (Farmer et al. 2019;
Leung et al. 2019; M19; Renzo et al. 2020).

We find systematic differences when comparing individual mod-
els for the same initial mass. The final BH masses computed with
our time-dependent treatment of convective deceleration are lower
by up to ∼5 M� than those in our grid computed adopting the
classic mixing length theory. After inspection of the evolution of
the internal structure, this seems to be a consequence of more
prompt and stronger convection during the propagation of a pulse.
Convection carries out part of the energy, preventing it from
becoming bulk kinetic energy of ejecta. This results in weaker
pulses and a lower amount of mass ejected. The differences are
largest for models near the lower end of the mass range for pair
pulsations to occur (32 � MHe � 45 M�), but are less important
for the higher mass range (45 � MHe � 64 M�), because in these
models convection develops regardless of the algorithm employed,

3Sparser grids computed with the ‘time-dependent deceleration’ set-up but
no undershooting or with semiconvection efficiency of 1.0 are also available
at doi:10.5281/zenodo.3406320.

but is never sufficient to remove a large fraction of the energy
released in the thermonuclear explosion. Because of this, we find
that the predicted maximum BH mass for BHs below the gap is
robust at ∼48 M�.

For now, the robustness of the prediction for the location of
the edge of the gap is encouraging. Even the variations we find
between the grids for individual masses are smaller than the
typical uncertainties on the individual BH masses inferred from
gravitational-wave detections.

For the future, our results should be taken as a warning. The
variations we find between individual models are substantial. The
constraints from gravitational-wave events will become increas-
ingly precise with more detections. Moreover, we can anticipate an
increasing number of events detected with high signal-to-noise ratio,
and thus more accurately determined parameters for the individual
BHs. This will increase the robustness needed from the stellar model
predictions.

The treatment of convection will likely remain a multifaceted
challenge, of which the time dependence is only one aspect, com-
plimentary to other well-known issues, but there are several ways
forward. Multidimensional hydrodynamic simulations applicable to
the stellar regime can be used to derive a more realistic expressions
that can be included in stellar evolutionary codes (e.g. Meakin &
Arnett 2007; Couch & Ott 2013; Couch & O’Connor 2014; Arnett
et al. 2018, 2019; Yoshida et al. 2019). As a first step, a physically
motivated expression for the convective acceleration in the right-
hand side of equation (2) could be derived from the flow observed in
multidimensional hydrodynamic simulations, instead of the ad hoc
parametrizations presently used.

The increasing number of gravitational-wave events detected will
provide a major motivation for further improving the progenitor
models. The anticipated capabilities of third-generation detectors
are particularly promising. These should be able to detect massive
binary BHs across all redshifts where significant star formation
occurred in the Universe. They would enable us to probe the
evolution of the BH mass distribution as a function of redshift
and uncover possible detailed features in the shape of the mass
distribution, which bears the imprints of the physical processes that
govern the lives of their massive star progenitors.
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APPENDI X A : EVO LUTI ONARY TI ME-SCALES
POST-PULSE

To clarify the onset of convection in our MESA models, Fig. 3
shows the Kippenhahn diagrams using a non-physical quantity as
x coordinate, namely the model number. Since our models are not
computed with a fixed time step, this makes it hard to read the
amount of time elapsed. The total time elapsed corresponds to
roughly a few tenths of a year, as shown in Fig. A1.

Fig. A1 shows the evolution of the model number and time
step size δt (top two panels), together with some global quantities
(the Kelvin–Helmholtz time-scale τKH and nuclear luminosity Lnuc

integrated throughout the star, third and fourth panels from the top),
and the central temperature Tc (bottom panel) of the models shown

Figure A1. From top to bottom: evolution as a function of time �t since the
onset of the dynamical instability (marked by the thin vertical line) of model
number, time step size δt, Kelvin–Helmholtz time-scale, nuclear luminosity,
and central temperature. Red solid curves show the ‘classic MLT’ models,
while blue dashed curves show the ‘time-dependent deceleration’ models.
The left-hand (right-hand) column shows the 42 M� (54 M�) pair of models.
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in Fig. 3. These quantities are shown as a function of the time elapsed
since we turn on the HLLC solver (cf. equation 1), defined as �t =
0. As in Fig. 2, solid red curves show the ‘classic MLT’ models, and
blue thicker dashed curves show the ‘time-dependent deceleration’
models. The left-hand column shows the 42 M� models, while
the right-hand column shows the 54 M� models (corresponding,
respectively, to the top and bottom rows of Fig. 3). We chose the
vertical and horizontal ranges to encompass the entire evolution
shown in Fig. 3 for all these models.

The Kelvin–Helmholtz time-scale shown in the third panel is
computed as a function of the total mass and radius of the models,
however, these may include a significant amount of matter that is
unbound and expanding rapidly to very large radii. At the onset of
the pulses, the stars are evolving dynamically, on a much shorter
time-scale, and might temporarily be out of virial equilibrium

because of the changing distribution of mass and consequently
moment of inertia.

The spikes in Lnuc in the ‘classic MLT’ 42 M� models correspond
to the secondary burning episodes highlighted in the top right-
hand panel of Fig. 3, and they correlate with a strong decrease in
the time step size and consequent increase of the model number
around a given �t. The use of equation (2) in the ‘time-dependent
deceleration models’ allows us to use generally longer time steps,
turn on the HLLC earlier (more physical time elapses between �t =
0 and the first spike in Tc corresponding a thermonuclear explosion),
and keep it on for a longer physical time.
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