11 research outputs found
Supporting data in ENDNOTE for: focused ultrasound transiently increases membrane conductance in isolated crayfish axon
NSF (#1707865, PI â Okada
Multi-modal transducer-waveguide construct coupled to a medical needle
Annually, more than 16 Ă 109 medical needles are consumed worldwide. However, the functions of the medical needle are still limited mainly to cutting and delivering material to or from a target site. Ultrasound combined with a hypodermic needle could add value to many medical applications, for example, by reducing the penetration force needed during the intervention, adding precision by limiting the needle deflection upon insertion into soft tissues, and even improving tissue collection in fine-needle biopsy applications. In this study, we develop a waveguide construct able to operate a longitudinal-flexural conversion of a wave when transmitted from a Langevin transducer to a conventional medical needle, while maintaining high electric-to-acoustic power efficiency. The optimization of the waveguide structure was realized in silico using the finite element method followed by prototyping the construct and characterizing it experimentally. The experiments conducted at low electrical power consumption (under 5âW) show a 30âkHz flexural needle tip displacement up to 200âÎŒm and 73% electric-to-acoustic power efficiency. This, associated with a small sized transducer, could facilitate the design of ultrasonic medical needles, enabling portability, batterization, and improved electrical safety, for applications such as biopsy, drug and gene delivery, and minimally invasive interventions.Peer reviewe
Automatic segmentation for detecting uterine fibroid regions treated with MR-guided high intensity focused ultrasound (MR-HIFU)
Purpose: Up to 25% of women suffer from uterine fibroids (UF) that cause infertility, pain, and discomfort. MR-guided high intensity focused ultrasound (MR-HIFU) is an emerging technique for noninvasive, computer-guided thermal ablation of UFs. The volume of induced necrosis is a predictor of the success of the treatment. However, accurate volume assessment by hand can be time consuming, and quick tools produce biased results. Therefore, fast and reliable tools are required in order to estimate the technical treatment outcome during the therapy event so as to predict symptom relief. Methods: A novel technique has been developed for the segmentation and volume assessment of the treated region. Conventional algorithms typically require user interaction ora priori knowledge of the target. The developed algorithm exploits the treatment plan, the coordinates of the intended ablation, for fully automatic segmentation with no user input. Results: A good similarity to an expert-segmented manual reference was achieved (Dice similarity coefficient = 0.880 ± 0.074). The average automatic segmentation time was 1.6 ± 0.7 min per patient against an order of tens of minutes when done manually. Conclusions: The results suggest that the segmentation algorithm developed, requiring no user-input, provides a feasible and practical approach for the automatic evaluation of the boundary and volume of the HIFU-treated regio
Ultrasound-Enhanced Fine-Needle Biopsy Improves Yield in Human Epithelial and Lymphoid Tissue
Objective: Needle biopsy is a common technique used to obtain cell and tissue samples for diagnostics. Currently, two biopsy methods are widely used: (i) fine-needle aspiration biopsy (FNAB) and (ii) core needle biopsy (CNB). However, these methods have limitations. Recently, we developed ultrasound-enhanced fine-needle aspiration biopsy (USeFNAB), which employs a needle that flexurally oscillates at an ultrasonic frequency of âŒ32 kHz. The needle motion contributes to increased tissue collection while preserving cells and tissue constructs for pathological assessment. Previously, USeFNAB has been investigated only in ex vivo animal tissue. The present study was aimed at determining the feasibility of using USeFNAB in human epithelial and lymphoid tissue. Methods: Needle biopsy samples were acquired using FNAB, CNB and USeFNAB on ex vivo human tonsils (N = 10). The tissue yield and quality were quantified by weight measurement and blinded pathologistsâ assessments. The biopsy methods were then compared. Results: The results revealed sample mass increases of, on average, 2.3- and 5.4-fold with USeFNAB compared with the state-of-the-art FNAB and CNB, respectively. The quality of tissue fragments collected by USeFNAB was equivalent to that collected by the state-of-the-art methods in terms of morphology and immunohistochemical stainings made from cell blocks as judged by pathologists. Conclusion: Our study indicates that USeFNAB is a promising method that could improve tissue yield to ensure sufficient material for ancillary histochemical and molecular studies for diagnostic pathology, thereby potentially increasing diagnostic accuracy.Peer reviewe