49 research outputs found

    Upregulation of HSF1 in estrogen receptor positive breast cancer

    Get PDF
    Heat shock transcription factor 1 (HSF1), a key regulator of the heat-shock response, is deregulated in many cancers. HSF1 can mediate cancer cell survival and metastasis. High levels of HSF1 have been associated with poor prognosis in breast cancer. The nature of HSF1 upregulation needs to be validated in different cohorts to further validate its prognostic utility in breast cancer. We first evaluated its expression in a cohort of breast cancer tissue microarrays with Oncotype DX recurrence scores available using immunohistochemistry. To further confirm the clinical relevance and prognostic impact, mutational and methylation status of the gene were also assessed in The Cancer Genome Atlas and publically available microarray datasets. Immunohistochemical analysis showed that HSF1 expression is independent of Oncotype DX high recurrence score in ER-positive node-negative patients. Analysis of The Cancer Genome Atlas data revealed upregulation of HSF1 is not due to methylation or mutation. HSF1 copy number variations and amplifications (15%) were not associated with survival. In publicly available microarray datasets, a prognostic impact was observed in ER-positive tumors, but not in ER-negative tumors. Patients with ER-positive tumors with high HSF1 levels were associated with shorter overall survival (P = 0.00045) and relapse-free survival (P = 0.0057). In multivariable analysis, HSF1 remained a significant prognostic parameter. The mRNA expression levels of HSF1 in ER-positive breast cancer are associated with both shorter relapse-free and overall survival. This prognostic impact is specific to mRNA expression, but stayed insignificant by protein expression or by analyzing amplification events

    HSF1 as a Cancer Biomarker and Therapeutic Target

    Get PDF
    Heat shock factor 1 (HSF1) was discovered in 1984 as the master regulator of the heat shock response. In this classical role, HSF1 is activated following cellular stresses such as heat shock that ultimately lead to HSF1-mediated expression of heat shock proteins to protect the proteome and survive these acute stresses. However, it is now becoming clear that HSF1 also plays a significant role in several diseases, perhaps none more prominent than cancer. HSF1 appears to have a pleiotropic role in cancer by supporting multiple facets of malignancy including migration, invasion, proliferation, and cancer cell metabolism among others. Because of these functions, and others, of HSF1, it has been investigated as a biomarker for patient outcomes in multiple cancer types. HSF1 expression alone was predictive for patient outcomes in multiple cancer types but in other instances, markers for HSF1 activity were more predictive. Clearly, further work is needed to tease out which markers are most representative of the tumor promoting effects of HSF1. Additionally, there have been several attempts at developing small molecule inhibitors to reduce HSF1 activity. All of these HSF1 inhibitors are still in preclinical models but have shown varying levels of efficacy at suppressing tumor growth. The growth of research related to HSF1 in cancer has been enormous over the last decade with many new functions of HSF1 discovered along the way. In order for these discoveries to reach clinical impact, further development of HSF1 as a biomarker or therapeutic target needs to be continued

    Ductal carcinoma in situ of breast: update 2019

    Get PDF

    NUT Midline Carcinoma Masquerading As a Thymic Carcinoma

    Get PDF
    Thymic carcinomas are rare tumors that arise from the epithelium of the thymus gland and characterized by cytologic atypia, invasiveness, and high risk of relapse and death.1–3 The current WHO schema recognizes at least 11 histologic subtypes.4–7 Undifferentiated thymic carcinoma is one of the subtypes that can be indistinguishable from other poorly differentiated carcinomas such as NUT midline carcinoma (NMC).8 Despite the aggressive nature of both diseases, a correct diagnosis is important because of the recent development of targeted therapies for NMCs. Herein we describe two cases of a particularly aggressive form of disease and discuss the differential diagnosis of these lesions

    Prognostic Impact of HOTAIR Expression is Restricted to ER-Negative Breast Cancers

    Get PDF
    Expression of HOX transcript antisense intergenic RNA (HOTAIR), a large intergenic noncoding RNA (lincRNA), has been described as a metastases-associated lincRNA in various cancers including breast, liver and colon cancer cancers. We sought to determine if expression of HOTAIR could be used as a surrogate for assessing nodal metastases and evaluated RNA in situ hybridization (RNA-ISH) assay in a tissue microarray constructed from 133 breast cancer patients. The prognostic value of HOTAIR was further validated in large cohorts using The Cancer Genome Atlas (TCGA) breast cancer subjects. RNA-ISH analysis was successful in 94 cases (17% cases scored 0, 32.9% scored 1, 30.8% scored 2, and 19.1% scored 3). The expression of HOTAIR did not correlate with nodal metastasis regardless of the scoring intensity or with other study parameters (age, tumor size and grade, expression status). Further analysis of TCGA dataset showed that HOTAIR expression was lower in ductal carcinomas but higher in ER-negative tumors. Overexpression of HOTAIR was not associated with nodal metastases or prognosis in ER-positive patients. Its function as a poor prognostic indicator in ER-negative patients was restricted to node-positive patients. HOTAIR appears to be a marker for lymphatic metastases rather than hematogenous metastases in ER-negative patients

    CIBERSORT analysis of TCGA and METABRIC identifies subgroups with better outcomes in triple negative breast cancer

    Get PDF
    Studies have shown that the presence of tumor infiltrating lymphocytes (TILs) in Triple Negative Breast Cancer (TNBC) is associated with better prognosis. However, the molecular mechanisms underlying these immune cell differences are not well delineated. In this study, analysis of hematoxylin and eosin images from The Cancer Genome Atlas (TCGA) breast cancer cohort failed to show a prognostic benefit of TILs in TNBC, whereas CIBERSORT analysis, which quantifies the proportion of each immune cell type, demonstrated improved overall survival in TCGA TNBC samples with increased CD8 T cells or CD8 plus CD4 memory activated T cells and in Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) TNBC samples with increased gamma delta T cells. Twenty-five genes showed mutational frequency differences between the TCGA high and low T cell groups, and many play important roles in inflammation or immune evasion (ATG2B, HIST1H2BC, PKD1, PIKFYVE, TLR3, NOTCH3, GOLGB1, CREBBP). Identification of these mutations suggests novel mechanisms by which the cancer cells attract immune cells and by which they evade or dampen the immune system during the cancer immunoediting process. This study suggests that integration of mutations with CIBERSORT analysis could provide better prediction of outcomes and novel therapeutic targets in TNBC cases

    Expression levels of SF3B3 correlate with prognosis and endocrine resistance in estrogen receptor-positive breast cancer

    Get PDF
    De novo or acquired resistance to endocrine therapy limits its utility in a significant number of estrogen receptor-positive (ER-positive) breast cancers. It is crucial to identify novel targets for therapeutic intervention and improve the success of endocrine therapies. Splicing factor 3b, subunit 1 (SF3B1) mutations are described in luminal breast cancer albeit in low frequency. In this study, we evaluated the role of SF3B1 and SF3B3, critical parts of the SF3b splicing complex, in ER-positive endocrine resistance. To ascertain the role of SF3B1/SF3B3 in endocrine resistance, their expression levels were evaluated in ER-positive/endocrine-resistant cell lines (MCF-7/LCC2 and MCF-7/LCC9) using a real-time quantitative reverse transcription PCR (qRT-PCR). To further determine their clinical relevance, expression analysis was performed in a cohort of 60 paraffin-embedded ER-positive, node-negative breast carcinomas with low, intermediate, and high Oncotype DX recurrence scores. Expression levels of SF3B1 and SF3B3 and their prognostic value were validated in large cohorts using publicly available gene expression data sets including The Cancer Genome Atlas. SF3B1 and SF3B3 levels were significantly increased in ERα-positive cells with acquired tamoxifen (MCF-7/LCC2; both P<0.0002) and fulvestrant/tamoxifen resistance (MCF-7/LCC9; P=0.008 for SF3B1 and P=0.0006 for SF3B3). Expression levels of both MCF-7/LCC2 and MCF-7/LCC9 were not affected by additional treatments with E2 and/or tamoxifen. Furthermore, qRT-PCR analysis confirmed that SF3B3 expression is significantly upregulated in Oncotype DX high-risk groups when compared with low risk (P=0.019). Similarly, in publicly available breast cancer gene expression data sets, overexpression of SF3B3, but not SF3B1, was significantly correlated with overall survival. Furthermore, the correlation was significant in ER-positive, but not in ER-negative tumors

    Splicing factor ESRP1 controls ER-positive breast cancer by altering metabolic pathways

    Get PDF
    The epithelial splicing regulatory proteins 1 and 2 (ESRP1 and ESRP2) control the epithelial-to-mesenchymal transition (EMT) splicing program in cancer. However, their role in breast cancer recurrence is unclear. In this study, we report that high levels of ESRP1, but not ESRP2, are associated with poor prognosis in estrogen receptor positive (ER+) breast tumors. Knockdown of ESRP1 in endocrine-resistant breast cancer models decreases growth significantly and alters the EMT splicing signature, which we confirm using TCGA SpliceSeq data of ER+ BRCA tumors. However, these changes are not accompanied by the development of a mesenchymal phenotype or a change in key EMT-transcription factors. In tamoxifen-resistant cells, knockdown of ESRP1 affects lipid metabolism and oxidoreductase processes, resulting in the decreased expression of fatty acid synthase (FASN), stearoyl-CoA desaturase 1 (SCD1), and phosphoglycerate dehydrogenase (PHGDH) at both the mRNA and protein levels. Furthermore, ESRP1 knockdown increases the basal respiration and spare respiration capacity. This study reports a novel role for ESRP1 that could form the basis for the prevention of tamoxifen resistance in ER+ breast cancer

    Thymic Carcinomas and Second Malignancies: A Single-Center Review

    Get PDF
    Thymic carcinomas account for less than 0.01% of new cancer diagnoses annually and are more aggressive than thymomas. Autoimmune disorders have been associated with thymomas and only recently with thymic carcinomas. Second malignancies are well described after thymomas. The aim of this study was to analyze the incidence of second malignancies in patients with thymic carcinomas. All cases of thymic carcinomas were identified from the pathology archives of Indiana University. Histological materials were reviewed and further correlated with clinical data to identify incidence of second cancers in patients with thymic carcinomas. Histological material was available for review in 92 cases of thymic carcinoma. Clinical data were available for 85 patients. Fourteen of these (16.5%) patients had a second malignancy; these included small cell lung carcinoma, "testicular cancer", embryonal carcinoma, seminoma, breast carcinoma (two cases), prostatic adenocarcinoma, Hodgkin's lymphoma, thyroid carcinoma, bladder carcinoma (two cases), renal cell carcinoma, and melanoma. The latter could precede, be concurrent with, or follow the diagnosis thymic carcinoma. The incidence of second cancers in patients with thymic carcinomas is similar to that reported for thymomas. Abnormalities in immunological surveillance may be responsible for this high incidence of second malignancies in thymic tumors

    Independent Validation of EarlyR Gene Signature in BIG 1-98: A Randomized, Double-Blind, Phase III Trial Comparing Letrozole and Tamoxifen as Adjuvant Endocrine Therapy for Postmenopausal Women with Hormone Receptor-Positive, Early Breast Cancer

    Get PDF
    Background EarlyR gene signature in estrogen receptor–positive (ER+) breast cancer is computed from the expression values of ESPL1, SPAG5, MKI67, PLK1, and PGR. EarlyR has been validated in multiple cohorts profiled using microarrays. This study sought to verify the prognostic features of EarlyR in a case-cohort sample from BIG 1–98, a randomized clinical trial of ER+ postmenopausal breast cancer patients treated with adjuvant endocrine therapy (letrozole or tamoxifen). Methods Expression of EarlyR gene signature was estimated by Illumina cDNA-mediated Annealing, Selection, and Ligation assay of RNA from formalin-fixed, paraffin-embedded primary breast cancer tissues in a case-cohort subset of ER+ women (N = 1174; 216 cases of recurrence within 8 years) from BIG 1–98. EarlyR score and prespecified risk strata (≀25 = low, 26–75 = intermediate, >75 = high) were “blindly” computed. Analysis endpoints included distant recurrence–free interval and breast cancer–free interval at 8 years after randomization. Hazard ratios (HRs) and test statistics were estimated with weighted analysis methods. Results The distribution of the EarlyR risk groups was 67% low, 19% intermediate, and 14% high risk in this ER+ cohort. EarlyR was prognostic for distant recurrence–free interval; EarlyR high-risk patients had statistically increased risk of distant recurrence within 8 years (HR = 1.73, 95% confidence interval = 1.14 to 2.64) compared with EarlyR low-risk patients. EarlyR was also prognostic of breast cancer–free interval (HR = 1.74, 95% confidence interval = 1.21 to 2.62). Conclusions This study confirmed the prognostic significance of EarlyR using RNA from formalin-fixed, paraffin-embedded tissues from a case-cohort sample of BIG 1–98. EarlyR identifies a set of high-risk patients with relatively poor prognosis who may be considered for additional treatment. Further studies will focus on analyzing the predictive value of EarlyR signature
    corecore