5 research outputs found
The RNA-binding protein RBP33 dampens non-productive transcription in trypanosomes
In-depth analysis of the transcriptomes of several model organisms has revealed that genomes are pervasively transcribed, giving rise to an abundance of non-canonical and mainly antisense RNA polymerase II-derived transcripts that are produced from almost any genomic context. Pervasive RNAs are degraded by surveillance mechanisms, but the repertoire of proteins that control the fate of these non-productive transcripts is still incomplete. Trypanosomes are single-celled eukaryotes that show constitutive RNA polymerase II transcription and in which initiation and termination of transcription occur at a limited number of sites per chromosome. It is not known whether pervasive transcription exists in organisms with unregulated RNA polymerase II activity, and which factors could be involved in the process. We show here that depletion of RBP33 results in overexpression of similar to 40% of all annotated genes in the genome, with a marked accumulation of sense and antisense transcripts derived from silenced regions. RBP33 loss does not result in a significant increase in chromatin accessibility. Finally, we have found that transcripts that increase in abundance upon RBP33 knockdown are significantly more stable in RBP33-depleted trypanosomes, and that the exosome complex is responsible for their degradation. Our results provide strong evidence that RBP33 dampens non-productive transcription in trypanosomes
Lead Optimization of 3,5-Disubstituted-7-Azaindoles for the Treatment of Human African Trypanosomiasis.
Neglected tropical diseases such as human African trypanosomiasis (HAT) are prevalent primarily in tropical climates and among populations living in poverty. Historically, the lack of economic incentive to develop new treatments for these diseases has meant that existing therapeutics have serious shortcomings in terms of safety, efficacy, and administration, and better therapeutics are needed. We now report a series of 3,5-disubstituted-7-azaindoles identified as growth inhibitors of Trypanosoma brucei, the parasite that causes HAT, through a high-throughput screen. We describe the hit-to-lead optimization of this series and the development and preclinical investigation of 29d, a potent antitrypanosomal compound with promising pharmacokinetic (PK) parameters. This compound was ultimately not progressed beyond in vivo PK studies due to its inability to penetrate the blood-brain barrier (BBB), critical for stage 2 HAT treatments.The authors acknowledge funding from the National Institute of Allergy and Infectious Diseases (M.P.P. and M.N., R01AI114685; M.P.P., 1R21AI127594, R01AI124046; C.R.C., R21AI126296; https://www.niaid.nih.gov/), the Spanish Ministerio de Economí a, Industria y Competitividad (M.N., SAF2015-71444-P; D.G.-P., SAF2016-79957-R; http://www.mineco.gob.es), Subdireccion General de Redes ́ y Centros de Investigacion Cooperativa (RICET, https://www.ricet.es/) (M.N., RD16/0027/0019; D.G.P., RD16/ 0027/0014), and RTI2018-097210-B-I00 (MINCIU-FEDER) to F.G. An ACS MEDI Predoctoral Fellowship for D.M.K. is gratefully acknowledged, as is support from the National Science Foundation for K.F. (CHE-1262734). We thank AstraZeneca, Charles River Laboratories, and GlaxoSmithKline for the provision of the in vitro ADME and physicochemical properties data. The use of JChem/ChemAxon software is acknowledged
Corrigendum: Identification of novel anti-amoebic pharmacophores from kinase inhibitor chemotypes
Acanthamoeba species, Naegleria fowleri, and Balamuthia mandrillaris are opportunistic pathogens that cause a range of brain, skin, eye, and disseminated diseases in humans and animals. These pathogenic free-living amoebae (pFLA) are commonly misdiagnosed and have sub-optimal treatment regimens which contribute to the extremely high mortality rates (>90%) when they infect the central nervous system. To address the unmet medical need for effective therapeutics, we screened kinase inhibitor chemotypes against three pFLA using phenotypic drug assays involving CellTiter-Glo 2.0. Herein, we report the activity of the compounds against the trophozoite stage of each of the three amoebae, ranging from nanomolar to low micromolar potency. The most potent compounds that were identified from this screening effort were: 2d (A. castellanii EC50: 0.92 ± 0.3 μM; and N. fowleri EC50: 0.43 ± 0.13 μM), 1c and 2b (N. fowleri EC50s: <0.63 μM, and 0.3 ± 0.21 μM), and 4b and 7b (B. mandrillaris EC50s: 1.0 ± 0.12 μM, and 1.4 ± 0.17 μM, respectively). With several of these pharmacophores already possessing blood–brain barrier (BBB) permeability properties, or are predicted to penetrate the BBB, these hits present novel starting points for optimization as future treatments for pFLA-caused diseases
Identification of sequence-specific promoters driving polycistronic transcription initiation by RNA polymerase II in trypanosomes.
Protein-coding genes in trypanosomes occur in polycistronic transcription units (PTUs). How RNA polymerase II (Pol II) initiates transcription of PTUs has not been resolved; the current model favors chromatin modifications inducing transcription rather than sequence-specific promoters. Here, we uncover core promoters by functional characterization of Pol II peaks identified by chromatin immunoprecipitation sequencing (ChIP-seq). Two distinct promoters are located between divergent PTUs, each driving unidirectional transcription. Detailed analysis identifies a 75-bp promoter that is necessary and sufficient to drive full reporter expression and contains functional motifs. Analysis of further promoters suggests transcription initiation is regulated and promoters are either focused or dispersed. In contrast to the previous model of unregulated and promoter-independent transcription initiation, we find that sequence-specific promoters determine the initiation of Pol II transcription of protein-coding genes PTUs. These findings in Trypanosoma brucei suggest that in addition of chromatin modifications, promoter motifs-based regulation of gene expression is deeply conserved among eukaryotes.This work was supported by grants from the Spanish Ministerio de Ciencia, Innovación y Universidades (RTI2018-098834-B-I00), Subdirección General de Redes y Centros de Investigación Cooperativa (RD12/0018/0015, RD16/0027/0019, RD16/0027/0014), and National Institutes of Health (R01AI114685). M.C. is a Wellcome Investigator 217138/Z/19/Z. The authors wish to thank Ms. Maria Benitez (IPBLN-CSIC) for her technical support and Gretchen Diffendall (Pasteur Institute) for critical reading of the manuscript
Socio-cultural factors and female entrepreneurship
The purpose of this paper is to analyze the main socio-cultural factors that influence women entrepreneurship in Catalonia, using institutional economics as a theoretical framework. The empirical research employs logistic regression models (rare events logit), utilizing data obtained from the Global Entrepreneurship Monitor project (GEM). The main findings highlight that 'fear of failure' and 'perceived capabilities' are the most important socio-cultural factors on the probability of becoming a woman entrepreneur. The research contributes both theoretically, advancing knowledge of the socio-cultural factors that affect female entrepreneurship, and practically, helping in the development of educational programmes and support policies to promote entrepreneurial activity. © 2013 Springer Science+Business Media New York