9,875 research outputs found

    Hall-MHD small-scale dynamos

    Get PDF
    Much of the progress in our understanding of dynamo mechanisms has been made within the theoretical framework of magnetohydrodynamics (MHD). However, for sufficiently diffuse media, the Hall effect eventually becomes non-negligible. We present results from three dimensional simulations of the Hall-MHD equations subjected to random non-helical forcing. We study the role of the Hall effect in the dynamo efficiency for different values of the Hall parameter, using a pseudospectral code to achieve exponentially fast convergence. We also study energy transfer rates among spatial scales to determine the relative importance of the various nonlinear effects in the dynamo process and in the energy cascade. The Hall effect produces a reduction of the direct energy cascade at scales larger than the Hall scale, and therefore leads to smaller energy dissipation rates. Finally, we present results stemming from simulations at large magnetic Prandtl numbers, which is the relevant regime in hot and diffuse media such a the interstellar medium.Comment: 11 pages and 11 figure

    Quasi-exact solvability beyond the SL(2) algebraization

    Full text link
    We present evidence to suggest that the study of one dimensional quasi-exactly solvable (QES) models in quantum mechanics should be extended beyond the usual \sla(2) approach. The motivation is twofold: We first show that certain quasi-exactly solvable potentials constructed with the \sla(2) Lie algebraic method allow for a new larger portion of the spectrum to be obtained algebraically. This is done via another algebraization in which the algebraic hamiltonian cannot be expressed as a polynomial in the generators of \sla(2). We then show an example of a new quasi-exactly solvable potential which cannot be obtained within the Lie-algebraic approach.Comment: Submitted to the proceedings of the 2005 Dubna workshop on superintegrabilit

    Scaling law for the heating of solar coronal loops

    Get PDF
    We report preliminary results from a series of numerical simulations of the reduced magnetohydrodynamic equations, used to describe the dynamics of magnetic loops in active regions of the solar corona. A stationary velocity field is applied at the photospheric boundaries to imitate the driving action of granule motions. A turbulent stationary regime is reached, characterized by a broadband power spectrum Ekk3/2E_k\simeq k^{-3/2} and heating rate levels compatible with the heating requirements of active region loops. A dimensional analysis of the equations indicates that their solutions are determined by two dimensionless parameters: the Reynolds number and the ratio between the Alfven time and the photospheric turnover time. From a series of simulations for different values of this ratio, we determine how the heating rate scales with the physical parameters of the problem, which might be useful for an observational test of this model.Comment: 12 pages, 4 figures. Astrophysical Journal Letters (in press

    Multilingual Lexical Semantic Resources for Ontology Translation

    Full text link
    We describe the integration of some multilingual language resources in ontological descriptions, with the purpose of providing ontologies, which are normally using concept labels in just one (natural) language, with multilingual facility in their design and use in the context of Semantic Web applications, supporting both the semantic annotation of textual documents with multilingual ontology labels and ontology extraction from multilingual text sources

    Generalized Berreman's model of the elastic surface free energy of a nematic liquid crystal on a sawtoothed substrate

    Get PDF
    In this paper we present a generalization of Berreman's model for the elastic contribution to the surface free-energy density of a nematic liquid crystal in presence of a sawtooth substrate which favours homeotropic anchoring, as a function of the wavenumber of the surface structure qq, the tilt angle α\alpha and the surface anchoring strength ww. In addition to the previously reported non-analytic contribution proportional to qlnqq\ln q, due to the nucleation of disclination lines at the wedge bottoms and apexes of the substrate, the next-to-leading contribution is proportional to qq for a given substrate roughness, in agreement with Berreman's predictions. We characterise this term, finding that it has two contributions: the deviations of the nematic director field with respect to the corresponding to the isolated disclination lines, and their associated core free energies. Comparison with the results obtained from the Landau-de Gennes model shows that our model is quite accurate in the limit wL>1wL>1, when strong anchoring conditions are effectively achieved.Comment: 13 pages, 9 figures; revised version submitted to Phys. Rev.

    Low magnetic Prandtl number dynamos with helical forcing

    Get PDF
    We present direct numerical simulations of dynamo action in a forced Roberts flow. The behavior of the dynamo is followed as the mechanical Reynolds number is increased, starting from the laminar case until a turbulent regime is reached. The critical magnetic Reynolds for dynamo action is found, and in the turbulent flow it is observed to be nearly independent on the magnetic Prandtl number in the range from 0.3 to 0.1. Also the dependence of this threshold with the amount of mechanical helicity in the flow is studied. For the different regimes found, the configuration of the magnetic and velocity fields in the saturated steady state are discussed.Comment: 9 pages, 14 figure

    Study of the Gribov region in Euclidean Yang-Mills theories in the maximal Abelian gauge

    Full text link
    The properties of the Gribov region in SU(2) Euclidean Yang-Mills theories in the maximal Abelian gauge are investigated. This region turns out to be bounded in all off-diagonal directions, while it is unbounded along the diagonal one. The soft breaking of the BRST invariance due to the restriction of the domain of integration in the path integral to the Gribov region is scrutinized. Owing to the unboundedness in the diagonal direction, the invariance with respect to Abelian transformations is preserved, a property which is at the origin of the local U(1) Ward identity of the maximal Abelian gauge.Comment: 15 pages, one reference added, version accepted for publication in Phys. Rev.

    Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides

    Full text link
    We have investigated by means of high-pressure x-ray diffraction the structural stability of Pd2Mo3N, Ni2Mo3C0.52N0.48, Co3Mo3C0.62N0.38, and Fe3Mo3C. We have found that they remain stable in their ambient-pressure cubic phase at least up to 48 GPa. All of them have a bulk modulus larger than 330 GPa, being the least compressible material Fe3Mo3C, B0 = 374(3) GPa. In addition, apparently a reduction of compressibility is detected as the carbon content increased. The equation of state for each material is determined. A comparison with other refractory materials indicates that interstitial nitrides and carbides behave as ultra-incompressible materials.Comment: 14 pages, 3 figures, 1 tabl
    corecore