2 research outputs found

    Molecular phylogeny of the genus Chondrina (Gastropoda, Panpulmonata, Chondrinidae) in the Iberian Peninsula

    Get PDF
    [EN] Chondrina Reichenbach, 1828 is a highly diverse genus of terrestrial molluscs currently including 44 species with about 28 subspecific taxa. It is distributed through North Africa, central and southern Europe, from Portugal in the West to the Caucasus and Asia Minor in the East. Approximately 70% of the species are endemic to the Iberian Peninsula constituting its main center of speciation with 34 species. This genus includes many micro endemic taxa, some of them not yet described, confined to limestone habitats (being strictly rock-dwelling species). They are distributed on rocky outcrops up to 2000 m.a.s.l. It is a genus of conical-fusiform snails that differ mainly in shell characters and in the number and position of teeth in their aperture. So far, molecular studies on Chondrina have been based exclusively on the mitochondrial Cytochrome Oxidase subunit I region (COI). These studies gave a first view of the phylogeny of the genus but many inner nodes were not statistically supported. The main objective of the study is to obtain a better understanding of the phylogeny and systematics of the genus Chondrina on the Iberian Peninsula, using multilocus molecular analysis. Partial sequences of the COI and 16S rRNA genes, as well as of the nuclear Internal Transcribed Spacer 1 (ITS1-5.8S) and Internal Transcribed Spacer 2 (5.8S-ITS2-28S) were obtained from individuals of all the extant Chondrina species known from the Iberian Peninsula. In addition to this, the newly obtained COI sequences were combined with those previously published in the GenBank. Phylogenetic relationships were inferred using maximum likelihood and Bayesian methods. The reconstructed phylogenies showed high values of support for more recent branches and basal nodes. Moreover, molecular species delimitation allowed to better define the studied species and check the presence of new taxa.This work was partially funded by the Basque Government through the Research group on “Systematics, Biogeography and Population Dynamics” (IT575-13) and “Systematics, Biogeography, Behavioural ecology and Evolution” (IT1163-19). E. Somoza Valdeolmillos was supported by a PhD fellowship awarded in 2015 by the University of the Basque Country (UPV/EHU)

    Simultaneous analysis of the intestinal parasites and diet through eDNA metabarcoding

    No full text
    Agricultural expansion and intensification are having a huge impact on plant and arthropod diversity and abundance, affecting food availability for farmland birds. Difficult food access, in turn, can lead to immunosuppression and a higher incidence of parasites. In the studies designed to examine changes in the diet of birds and their parasites, metabarcoding is proving particularly useful. This technique requires mini-barcodes capable of amplifying the DNA of target organisms from fecal environmental DNA. To help to understand the impact of agricultural expansion on biodiversity, this study sought to design and identify mini-barcodes that might simultaneously assess diet and intestinal parasites from the feces of farmland birds. The capacity to identify diet and parasites of 2 existing and 3 newly developed mini-barcodes was tested “in silico” in relation to the behavior of a reference eukaryotic barcode. Among the newly designed mini-barcodes, MiniB18S_81 showed the higher taxonomic coverage of eukaryotic taxa and a greater amplification and identification capacity for diet and parasite taxa. Moreover, when it was tested on fecal samples from 5 different steppe bird species, MiniB18S_81 showed high taxonomic resolution of the most relevant diet and parasite phyla, Arthropoda, Nematoda, Platyhelminthes, and Apicomplexa at the order level. Thus, the mini-barcode developed emerges as an excellent tool to simultaneously provide detailed information regarding the diet and parasites of birds, essential for conservation and management.Xabier Cabodevilla was supported by a PhD grant, financed by the Basque Country Government (Grants no. PRE_2018_2_0273). This study is a contribution to project Sistemática, Biogeografía, Ecología del comportamiento y Evolución (IT1163-19) funded by Basque Country Government. Additional funds for this study were provided by the project 201630E096 funded by CSIC.Peer reviewe
    corecore