7 research outputs found

    Novel role of argonaute 1 in estrogen triggered transcription and alternative splicing regulation

    Get PDF
    En mamíferos las proteínas argonauta están bien caracterizadas como las efectoras delsilenciamiento post-transcripcional mediado por RNAs pequeños. Durante este procesofundamentalmente citoplasmático, dichas proteínas unen RNAs pequeños de 21nucleótidos los cuales por complementariedad de bases, se unen a los mRNA blancoinhibiendo su traducción o promoviendo su degradación. Si bien sabemos que las proteínasargonauta se encuentran tanto en el núcleo como en el citoplasma, es poco lo queconocemos acerca de su relevancia en procesos nucleares. En trabajos previos de nuestrolaboratorio, hemos analizado la unión a la cromatina de argonauta 1 (AGO1) a nivel delgenoma completo de la línea celular mamaria MCF7 y demostramos que AGO1 se une aelementos regulatorios de la transcripción (enhancers), preferentemente cuando éstos seencuentran activos. En este trabajo, continuamos con el análisis de la distribución genómica de AGO1 en lascélulas mamarias MCF7 y hallamos que esta proteína se encuentra mayormente asociada aenhancers cuya activación depende de la unión del receptor de estrógenos alfa (ERα), esdecir, que se activan ante la presencia de la hormona estradiol (E2). Observamos que, aligual que lo que ocurre con ERα, la asociación de AGO1 a estos enhancers depende deltratamiento con E2. En base a esto, estudiamos la relevancia de AGO1 en la activacióntranscripcional disparada por E2 en células MCF7. Encontramos que dicha activacióndepende de AGO1: ante el silenciamiento de la expresión de esta proteína observamos queel efecto del E2 en la activación transcripcional de los enhancers y de los genes blanco sereduce. Este efecto es acompañado, además, por una disminución del reclutamiento de ERαasí como también por una reducción en la frecuencia de interacción entre un enhancer y elpromotor de uno de sus genes blanco. Estos hallazgos proponen un rol fundamental para AGO1 en la activación transcripcional dependiente de estradiol. AGO1 interacciona con ERαde forma E2 dependiente, reforzando la idea de que AGO1 actúa directamente en laactivación transcripcional disparada por estrógenos. Por otro lado, estudiamos la relevancia de un enhancer intragénico dependiente de E2 en lamodulación del patrón de splicing alternativo de un evento que se encuentra río arriba dedicho elemento regulatorio. Utilizamos como modelo de estudio el exón cassette alternativo 107 del gen SYNE2. Vimos que la inclusión de dicho exón en el mRNA disminuye con eltratamiento de células con E2 de manera dependiente de AGO1. Más allá del estudio de un caso puntual en el que AGO1 regula el splicing alternativo, estos resultados permitenpostular un modelo en el que el proceso de splicing alternativo es modulado por eventosasociados a la activación de un enhancer intragénico cercano.In mammals, argonaute proteins are best known as the effectors of siRNA-mediated posttranscriptionalgene silencing. In this cytoplasmic process, argonautes bind 21 nt longsiRNAs which associate with their target mRNAs through base pairing, inducing theirdegradation or inhibiting their translation. Although argonaute proteins can be found both inthe cytoplasm and in the nucleus of mammalian cells, little is known about their roles innuclear functions. In a previous work from our laboratory, we analyzed the genomicdistribution of argonaute 1 (AGO1) in the mammary cell line MCF7 and demonstrated that itbinds active transcriptional enhancers. Further analysis presented here revealed that AGO1preferentially associates with estrogen receptor alpha (ERα)-dependent enhancers which areactivated upon treatment with estradiol (E2). Moreover, we uncover that AGO1 binding tothese enhancers is dependent on E2 treatment, as it is observed for ERα. We thereforesought to determine whether AGO1 is relevant for ERα-triggered transcriptional activation in MCF7 cells. We demonstrate here that AGO1 is necessary for this activation: AGO1silencing impairs enhancer activation as well as expression of ERα-target genes. Reducedrecruitment of ERα to the enhancers and reduced interaction frequency between anenhancer and the promoter of one of its target genes are also observed upon AGO1silencing. Altogether these findings indicate that AGO1 plays a key role in E2-triggeredtranscriptional activation. We found that AGO1 interacts with ERα in an E2 dependentmanner, further supporting the idea that AGO1 is directly involved in estrogen dependenttranscripcional activation. Additionally, we studied the relevance of an intragenic E2-dependent enhancer in thergulation of an alternative splicing event located upstream of this regulatory element. Totackle this, we used the alternative cassette exon 107 of the SYNE2 gene as a model. Results shown here revealed that the inclusion of exon 107 in SYNE2 mRNA decreasesupon E2 treatment, in an AGO1-dependent manner. These findings not only revealed a rolefor AGO1 in alternative splicing regulation, but also allow us to postulate a model in whichalternative splicing outcomes depend on regulatory events associated to a nearby intragenicenhancer.Fil: Gómez Acuña, Luciana Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    Functional studies of p.R132C, p.R149C, p.M283V, p.E431K, and a novel c.652-2A>G mutations of the CYP21A2 gene

    Get PDF
    Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is the most frequent inborn error of metabolism and accounts for 90–95% of CAH cases. In the present work, we analyzed the functional consequence of four novel previously reported point CYP21A2 mutations -p.R132C, p.R149C, p.M283V, p.E431K- found in Argentinean 21-hydroxylase deficient patients. In addition, we report an acceptor splice site novel point mutation, c.652-2A.G, found in a classical patient in compound heterozygosity with the rare p.R483Q mutation. We performed bioinformatic and functional assays to evaluate the biological implication of the novel mutation. Our analyses revealed that the residual enzymatic activity of the isolated mutants coding for CYP21A2 aminoacidic substitutions was reduced to a lesser than 50% of the wild type with both progesterone and 17-OH progesterone as substrates. Accordingly, all the variants would predict mild non-classical alleles. In one non-classical patient, the p.E431K mutation was found in cis with the p.D322G one. The highest decrease in enzyme activity was obtained when both mutations were assayed in the same construction, with a residual activity most likely related to the simple virilizing form of the disease. For the c.652-2A.G mutation, bioinformatic tools predicted the putative use of two different cryptic splicing sites. Nevertheless, functional analyses revealed the use of only one cryptic splice acceptor site located within exon 6, leading to the appearance of an mRNA with a 16 nt deletion. A severe allele is strongly suggested due to the presence of a premature stop codon in the protein only 12 nt downstream.Fil: Taboas, Melisa Ivana. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Gómez Acuña, Luciana Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Scaia, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; ArgentinaFil: Bruque, Carlos David. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; ArgentinaFil: Buzzalino, Noemí Delia. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán". Centro Nacional de Genética Médica; ArgentinaFil: Stivel, M.. Gobierno de la Ciudad Autonoma de Buenos Aires. Hospital General de Agudos Carlos Durand.; ArgentinaFil: Ceballos, Nora Raquel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Biodiversidad y Biología Experimental; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dain, Liliana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorio e Instituto de Salud "Dr. C. G. Malbrán"; Argentin

    Long range chromatin organization: a new layer in splicing regulation?

    Get PDF
    Splicing is a predominantly co-transcriptional process that has been shown to be tightly coupled to transcription. Chromatin structure is a key factor that mediates this functional coupling. In light of recent evidence that shows the importance of higher order chromatin organization in the coordination and regulation of gene expression, we discuss here the possible roles of long-range chromatin organization in splicing and alternative splicing regulation.Fil: Gómez Acuña, Luciana Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Seeking the truth behind the myth: Argonaute tales from “nuclearland”

    No full text
    Argonaute proteins have been traditionally characterized as a highly evolutionary conserved family engaged in post-transcriptional gene silencing pathways. The Argonaute family is mainly grouped into the AGO and PIWI clades. The canonical role of Argonaute proteins relies on their ability to bind small-RNAs that recognize complementary sequences on target mRNAs to induce either mRNA degradation or translational repression. However, there is an increasing amount of evidence supporting that Argonaute proteins also exert multiple nuclear functions that subsequently regulate gene expression. In this line, genome-wide studies showed that members from the AGO clade regulate transcription, 3D chromatin organization, and splicing of active loci located within euchromatin. Here, we discuss recent work based on high-throughput technologies that have significantly contributed to shed light on the multivariate nuclear functions of AGO proteins in different model organisms. We also analyze data supporting that AGO proteins are able to execute these nuclear functions independently from small RNA pathways. Finally, we integrate these mechanistic insights with recent reports highlighting the clinical importance of AGO in breast and prostate cancer development.Fil: Nazer, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Gómez Acuña, Luciana Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. University of Edinburgh; Reino UnidoFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Connections between chromatin signatures and splicing

    Get PDF
    Splicing and alternative splicing are involved in the expression of most human genes, playing key roles in differentiation, cell cycle progression, and development. Misregulation of splicing is frequently associated to disease, which imposes a better understanding of the mechanisms underlying splicing regulation. Accumulated evidence suggests that multiple trans-acting factors and cis-regulatory elements act together to determine tissue-specific splicing patterns. Besides, as splicing is often cotranscriptional, a complex picture emerges in which splicing regulation not only depends on the balance of splicing factor binding to their pre-mRNA target sites but also on transcription-associated features such as protein recruitment to the transcribing machinery and elongation kinetics. Adding more complexity to the splicing regulation network, recent evidence shows that chromatin structure is another layer of regulation that may act through various mechanisms. These span from regulation of RNA polymerase II elongation, which ultimately determines splicing decisions, to splicing factor recruitment by specific histone marks. Chromatin may not only be involved in alternative splicing regulation but in constitutive exon recognition as well. Moreover, splicing was found to be necessary for the proper ‘writing’ of particular chromatin signatures, giving further mechanistic support to functional interconnections between splicing, transcription and chromatin structure. These links between chromatin configuration and splicing raise the intriguing possibility of the existence of a memory for splicing patterns to be inherited through epigenetic modifications.Fil: Gómez Acuña, Luciana Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Fiszbein, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Alló, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Schor, Ignacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentin

    Transcriptional elongation and alternative splicing

    Get PDF
    Alternative splicing has emerged as a key contributor to proteome diversity, highlighting the importance of understanding its regulation. In recent years it became apparent that splicing is predominantly cotranscriptional, allowing for crosstalk between these two nuclear processes. We discuss some of the links between transcription and splicing, with special emphasis on the role played by transcription elongation in the regulation of alternative splicing events and in particular the kinetic model of alternative splicing regulation. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.Fil: Dujardin, Gwendal. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Lafaille, Celina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Petrillo, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Buggiano, Valeria Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Gómez Acuña, Luciana Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Fiszbein, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Godoy Herz, Micaela Amalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Nieto Moreno, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Muñoz, Manuel Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Alló, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Schor, Ignacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; ArgentinaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular. Laboratorio de Fisiología y Biología Molecular; Argentin

    Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells

    Get PDF
    The roles of Argonaute proteins in cytoplasmic microRNA and RNAi pathways are well established. However, their implication in small RNA-mediated transcriptional gene silencing in the mammalian cell nucleus is less understood. We have recently shown that intronic siRNAs cause chromatin modifications that inhibit RNA polymerase II elongation and modulate alternative splicing in an Argonaute-1 (AGO1)-dependent manner. Here we used chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) to investigate the genome-wide distribution of AGO1 nuclear targets. Unexpectedly, we found that about 80% of AGO1 clusters are associated with cell-type-specific transcriptional enhancers, most of them (73%) overlapping active enhancers. This association seems to be mediated by long, rather than short, enhancer RNAs and to be more prominent in intragenic, rather than intergenic, enhancers. Paradoxically, crossing ChIP-seq with RNA-seq data upon AGO1 depletion revealed that enhancer-bound AGO1 is not linked to the global regulation of gene transcription but to the control of constitutive and alternative splicing, which was confirmed by an individual gene analysis explaining how AGO1 controls inclusion levels of the cassette exon 107 in the SYNE2 gene.Fil: Alló, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Agirre, Eneritz. Universitat Pompeu Fabra; EspañaFil: Bessonov, Sergey. Max Planck Institute For Biophysical Chemistry; AlemaniaFil: Bertucci, Paola Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Gómez Acuña, Luciana Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Buggiano, Valeria Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Bellora, Nicolás. Universitat Pompeu Fabra; EspañaFil: Singh, Babita. Universitat Pompeu Fabra; EspañaFil: Petrillo, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Blaustein Kappelmacher, Matias. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Miñana, Belén. Universitat Pompeu Fabra; España. Centre for Genomic Regulation; EspañaFil: Dujardin, Gwendal. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Pozzi, Berta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Pelisch, Federico Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Bechara, Elías. Universitat Pompeu Fabra; España. Centre for Genomic Regulation; EspañaFil: Agafonov, Dmitry E.. Max Planck Institute For Biophysical Chemistry; AlemaniaFil: Srebrow, Anabella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: Lührmann, Reinhard. Max Planck Institute For Biophysical Chemistry; AlemaniaFil: Valcárcel, Juan. Universitat Pompeu Fabra; España. Institució Catalana de Recerca i Estudis Avancats; EspañaFil: Eyras, Eduardo. Universitat Pompeu Fabra; EspañaFil: Kornblihtt, Alberto Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; Argentin
    corecore