15,327 research outputs found

    Gravitational waveforms with controlled accuracy

    Get PDF
    A partially first-order form of the characteristic formulation is introduced to control the accuracy in the computation of gravitational waveforms produced by highly distorted single black hole spacetimes. Our approach is to reduce the system of equations to first-order differential form on the angular derivatives, while retaining the proven radial and time integration schemes of the standard characteristic formulation. This results in significantly improved accuracy over the standard mixed-order approach in the extremely nonlinear post-merger regime of binary black hole collisions.Comment: Revised version, published in Phys. Rev. D, RevTeX, 16 pages, 4 figure

    Probabilistic Approach to Time-Dependent Load-Transfer Models of Fracture

    Full text link
    A probabilistic method for solving time-dependent load-transfer models of fracture is developed. It is applicable to any rule of load redistribution, i.e, local, hierarchical, etc. In the new method, the fluctuations are generated during the breaking process (annealed randomness) while in the usual method, the random lifetimes are fixed at the beginning (quenched disorder). Both approaches are equivalent.Comment: 13 pages, 4 figures. To appear in Phys.Rev.

    A Novel Approach to Multimedia Ontology Engineering for Automated Reasoning over Audiovisual LOD Datasets

    Full text link
    Multimedia reasoning, which is suitable for, among others, multimedia content analysis and high-level video scene interpretation, relies on the formal and comprehensive conceptualization of the represented knowledge domain. However, most multimedia ontologies are not exhaustive in terms of role definitions, and do not incorporate complex role inclusions and role interdependencies. In fact, most multimedia ontologies do not have a role box at all, and implement only a basic subset of the available logical constructors. Consequently, their application in multimedia reasoning is limited. To address the above issues, VidOnt, the very first multimedia ontology with SROIQ(D) expressivity and a DL-safe ruleset has been introduced for next-generation multimedia reasoning. In contrast to the common practice, the formal grounding has been set in one of the most expressive description logics, and the ontology validated with industry-leading reasoners, namely HermiT and FaCT++. This paper also presents best practices for developing multimedia ontologies, based on my ontology engineering approach

    Antiferromagnetism at the YBa2Cu3O7 / La2/3Ca1/3MnO3 interface

    Full text link
    The magnetic properties of a series of YBa2Cu3O7-x/La2/3Ca1/3MnO3 (YBCO/LC1/3MO) superlattices grown by dc sputtering at high oxygen pressures (3.5 mbar) show the expected ferromagnetic behaviour. However, field cooled hysteresis loops at low temperature show the unexpected existence of exchange bias, effect associated with the existence of ferromagnetic/antiferromagnetic (F/AF) interfaces. The blocking temperature (TB) is found thickness dependent and the exchange bias field (HEB) is found inversely proportional to the FM layer thickness, as expected. The presence of an AF material is probably associated to interface disorder and Mn valence shift towards Mn4+.Comment: 12 pages, 2 figures, 1 table, submitted to Applied Physics Letter

    Bounds for the time to failure of hierarchical systems of fracture

    Full text link
    For years limited Monte Carlo simulations have led to the suspicion that the time to failure of hierarchically organized load-transfer models of fracture is non-zero for sets of infinite size. This fact could have a profound significance in engineering practice and also in geophysics. Here, we develop an exact algebraic iterative method to compute the successive time intervals for individual breaking in systems of height nn in terms of the information calculated in the previous height n1n-1. As a byproduct of this method, rigorous lower and higher bounds for the time to failure of very large systems are easily obtained. The asymptotic behavior of the resulting lower bound leads to the evidence that the above mentioned suspicion is actually true.Comment: Final version. To appear in Phys. Rev. E, Feb 199

    Plasmon polaritons in photonic superlattices containing a left-handed material

    Get PDF
    We analyze one-dimensional photonic superlattices which alternate layers of air and a left-handed material. We assume Drude-type dispersive responses for the dielectric permittivity and magnetic permeability of the left-handed material. Maxwell's equations and the transfer-matrix technique are used to derive the dispersion relation for the propagation of obliquely incident optical fields. The photonic dispersion indicates that the growth-direction component of the electric (or magnetic) field leads to the propagation of electric (or magnetic) plasmon polaritons, for either TE or TM configurations. Furthermore, we show that if the plasma frequency is chosen within the photonic =0=0 zeroth-order bandgap, the coupling of light with plasmons weakens considerably. As light propagation is forbidden in that particular frequency region, the plasmon-polariton mode reduces to a pure plasmon mode.Comment: 4 pages, 4 figure

    A dynamical inconsistency of Horava gravity

    Full text link
    The dynamical consistency of the non-projectable version of Horava gravity is investigated by focusing on the asymptotically flat case. It is argued that for generic solutions of the constraint equations the lapse must vanish asymptotically. We then consider particular values of the coupling constants for which the equations are tractable and in that case we prove that the lapse must vanish everywhere -- and not only at infinity. Put differently, the Hamiltonian constraints are generically all second-class. We then argue that the same feature holds for generic values of the couplings, thus revealing a physical inconsistency of the theory. In order to cure this pathology, one might want to introduce further constraints but the resulting theory would then lose much of the appeal of the original proposal by Horava. We also show that there is no contradiction with the time reparametrization invariance of the action, as this invariance is shown to be a so-called "trivial gauge symmetry" in Horava gravity, hence with no associated first-class constraints.Comment: 28 pages, 2 references adde

    A conjecture on Exceptional Orthogonal Polynomials

    Get PDF
    Exceptional orthogonal polynomial systems (X-OPS) arise as eigenfunctions of Sturm-Liouville problems and generalize in this sense the classical families of Hermite, Laguerre and Jacobi. They also generalize the family of CPRS orthogonal polynomials. We formulate the following conjecture: every exceptional orthogonal polynomial system is related to a classical system by a Darboux-Crum transformation. We give a proof of this conjecture for codimension 2 exceptional orthogonal polynomials (X2-OPs). As a by-product of this analysis, we prove a Bochner-type theorem classifying all possible X2-OPS. The classification includes all cases known to date plus some new examples of X2-Laguerre and X2-Jacobi polynomials
    corecore