54 research outputs found

    Nonlinear Trimodal Regression Analysis of Radiodensitometric Distributions to Quantify Sarcopenic and Sequelae Muscle Degeneration.

    Get PDF
    Efst ĂĄ sĂ­Ă°unni er hĂŠgt aĂ° nĂĄlgast greinina Ă­ heild sinni meĂ° ĂŸvĂ­ aĂ° smella ĂĄ hlekkinn To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files.Muscle degeneration has been consistently identified as an independent risk factor for high mortality in both aging populations and individuals suffering from neuromuscular pathology or injury. While there is much extant literature on its quantification and correlation to comorbidities, a quantitative gold standard for analyses in this regard remains undefined. Herein, we hypothesize that rigorously quantifying entire radiodensitometric distributions elicits more muscle quality information than average values reported in extant methods. This study reports the development and utility of a nonlinear trimodal regression analysis method utilized on radiodensitometric distributions of upper leg muscles from CT scans of a healthy young adult, a healthy elderly subject, and a spinal cord injury patient. The method was then employed with a THA cohort to assess pre- and postsurgical differences in their healthy and operative legs. Results from the initial representative models elicited high degrees of correlation to HU distributions, and regression parameters highlighted physiologically evident differences between subjects. Furthermore, results from the THA cohort echoed physiological justification and indicated significant improvements in muscle quality in both legs following surgery. Altogether, these results highlight the utility of novel parameters from entire HU distributions that could provide insight into the optimal quantification of muscle degeneration.European Commissio

    Improving prosthetic selection and predicting BMD from biometric measurements in patients receiving total hip arthroplasty

    Get PDF
    There are two surgical approaches to performing total hip arthroplasty (THA): a cemented or uncemented type of prosthesis. The choice is usually based on the experience of the orthopaedic surgeon and on parameters such as the age and gender of the patient. Using machine learning (ML) techniques on quantitative biomechanical and bone quality data extracted from computed tomography, electromyography and gait analysis, the aim of this paper was, firstly, to help clinicians use patient-specific biomarkers from diagnostic exams in the prosthetic decision-making process. The second aim was to evaluate patient long-term outcomes by predicting the bone mineral density (BMD) of the proximal and distal parts of the femur using advanced image processing analysis techniques and ML. The ML analyses were performed on diagnostic patient data extracted from a national database of 51 THA patients using the Knime analytics platform. The classification analysis achieved 93% accuracy in choosing the type of prosthesis; the regression analysis on the BMD data showed a coefficient of determination of about 0.6. The start and stop of the electromyographic signals were identified as the best predictors. This study shows a patient-specific approach could be helpful in the decision-making process and provide clinicians with information regarding the follow up of patients

    Evidence of unidirectional hybridization and second‐generation adult hybrid between the two largest animals on Earth, the fin and blue whales

    Get PDF
    Biodiversity in the oceans has dramatically declined since the beginning of the industrial era, with accelerated loss of marine biodiversity impairing the ocean's capacity to maintain vital ecosystem services. A few organisms epitomize the damaging and long‐lasting effects of anthropogenic exploitation: some whale species, for instance, were brought to the brink of extinction, with their population sizes reduced to such low levels that may have cause a significant disruption to their reproductive dynamics and facilitated hybridization events. The incidence of hybridization is nevertheless believed to be rare and very little information exist on its directionality. Here, using genetic markers, we show that all but one whale hybrid sample collected in Icelandic waters originated from the successful mating of male fin whale and female blue whale, thus suggesting unidirectional hybridization. We also demonstrate for the first time the existence of a second‐generation adult (male) hybrid resulting from a backcross between a female hybrid and a pure male fin whale. The incidence of hybridization events between fin and blue whales is likely underestimated and the observed unidirectional hybridization (for F1 and F2 hybrids) is likely to induce a reproductive loss in blue whale, which may represent an additional challenge to its recovery in the Atlantic Ocean compared to other rorquals

    Links Between Hydrothermal Environments, Pyrophosphate, Na+, and Early Evolution

    Get PDF
    The discovery that photosynthetic bacterial membrane-bound inorganic pyrophosphatase (PPase) catalyzed light-induced phosphorylation of orthophosphate (Pi) to pyrophosphate (PPi) and the capability of PPi to drive energy requiring dark reactions supported PPi as a possible early alternative to ATP. Like the proton-pumping ATPase, the corresponding membrane-bound PPase also is a H+-pump, and like the Na+-pumping ATPase, it can be a Na+-pump, both in archaeal and bacterial membranes. We suggest that PPi and Na+ transport preceded ATP and H+ transport in association with geochemistry of the Earth at the time of the origin and early evolution of life. Life may have started in connection with early plate tectonic processes coupled to alkaline hydrothermal activity. A hydrothermal environment in which Na+ is abundant exists in sediment-starved subduction zones, like the Mariana forearc in the W Pacific Ocean. It is considered to mimic the Archean Earth. The forearc pore fluids have a pH up to 12.6, a Na+-concentration of 0.7 mol/kg seawater. PPi could have been formed during early subduction of oceanic lithosphere by dehydration of protonated orthophosphates. A key to PPi formation in these geological environments is a low local activity of water

    Eighty-eight variants highlight the role of T cell regulation and airway remodeling in asthma pathogenesis

    Get PDF
    Publisher's version (Ăștgefin grein)Asthma is one of the most common chronic diseases affecting both children and adults. We report a genome-wide association meta-analysis of 69,189 cases and 702,199 controls from Iceland and UK biobank. We find 88 asthma risk variants at 56 loci, 19 previously unreported, and evaluate their effect on other asthma and allergic phenotypes. Of special interest are two low frequency variants associated with protection against asthma; a missense variant in TNFRSF8 and 3‘ UTR variant in TGFBR1. Functional studies show that the TNFRSF8 variant reduces TNFRSF8 expression both on cell surface and in soluble form, acting as loss of function. eQTL analysis suggests that the TGFBR1 variant acts through gain of function and together with an intronic variant in a downstream gene, SMAD3, points to defective TGFÎČR1 signaling as one of the biological perturbations increasing asthma risk. Our results increase the number of asthma variants and implicate genes with known role in T cell regulation, inflammation and airway remodeling in asthma pathogenesis.We thank the individuals who participated in this study and the staff at the Icelandic Patient Recruitment Center and the deCODE genetics core facilities. Further to all our colleagues who contributed to the data collection and phenotypic characterization of clinical samples as well as to the genotyping and analysis of the whole-genome association data. This research has been conducted using the UK biobank Resource under Application Number ‘24711’.Peer Reviewe

    Towards a patient-specific estimation of intra-operative femoral fracture risk.

    Get PDF
    To access publisher's full text version of this article click on the hyperlink belowTotal Hip Arthroplasty requires pre-surgical evaluation between un-cemented and cemented prostheses. A Patient with intra-operative periprosthetic fracture and another with a successful outcome were recruited, and their finite element models were constructed by processing CT data, assuming elastic-plastic behavior of the bone as function of the local density. To resemble the insertion of the prosthesis into the femur, a fictitious thermal dilatation is applied to the broach volume. Strain-based fracture risk factor is estimated, depicting results in terms of the total mechanical strain expressed using a simple "traffic lights" color code to provide immediate, concise, and intelligible pre-operative information to surgeons

    A CT-based method to compute femur remodelling after total hip arthroplasty

    No full text
    To access publisher's full text version of this article click on the hyperlink belowBone remodelling after total hip arthroplasty has been largely observed and investigated. Most studies rely on projective images and only few obtain 3D information with limited spatial resolution. This study proposes a method to provide quantitative, 3D high-resolution data about femur bone density variations, by means of CT volume processing. This would offer a tool for further research and clinical studies. Five patients subjected to primary, cementless total hip arthroplasty were considered. Calibrated CT volumes were acquired before, just after surgery and 1 yr later. Bone remodelling hinders accurate alignment of femur volumes acquired after a year; instead, prosthesis stem remains unchanged. Thus, after metal artefact reduction, prosthesis was segmented, and stem-based accurate alignment was obtained. A test to exclude prosthesis migration was performed by considering specific femur anatomical landmarks. Bone density error due to artefact reduction and realignment was estimated. Quantitative differences in bone mineral density were computed for each voxel, providing a resolution of about 1 mm. Preliminary results showed that the femur underwent consistent remodelling after a year. Widespread bone density losses appeared in those areas where strain-adaptive remodelling is normally expected, particularly about the calcar. Conversely, distal areas with clear stem-bone contact showed considerable density gains

    Lattice sites, charge states and spin–lattice relaxation of Fe ions in 57Mn+ implanted GaN and AlN

    No full text
    The lattice sites, valence states, resulting magnetic behaviour and spin–lattice relaxation of Fe ions in GaN and AlN were investigated by emission Mössbauer spectroscopy following the implantation of radioactive 57Mn+^{57}Mn^+ ions at ISOLDE/CERN. Angle dependent measurements performed at room temperature on the 14.4 keV Îł-rays from the 57Fe Mössbauer state (populated from the 57^{57}Mn ÎČ−ÎČ ^− decay) reveal that the majority of the Fe ions are in the 2+ valence state nearly substituting the Ga and Al cations, and/or associated with vacancy type defects. Emission Mössbauer spectroscopy experiments conducted over a temperature range of 100–800 K show the presence of magnetically split sextets in the “wings” of the spectra for both materials. The temperature dependence of the sextets relates these spectral features to paramagnetic Fe3+Fe^{3+} with rather slow spin–lattice relaxation rates which follow a T2T^2 temperature dependence characteristic of a two-phonon Raman process
    • 

    corecore