558 research outputs found

    Experiments of a twenty cell PEFC operating under fault conditions with diode by-pass circuit for uninterrupted power delivery

    Get PDF
    International audienceThe work presents the results of experiments related to the electrical and dynamical behaviour of a 500W, twenty cell Polymer Electrolyte Fuel Cell (PEFC) stack operated under fault condition and connected to an anti-parallel diode acting as a by-pass. The stack is placed in an experimental set-up that reproduces the electrical coupling in series of two fuel cells. The results allow the evaluation of the by-pass diode solution in the case of specific degraded working modes such as the break of the gas reactant feeding. The experiments presented in this article constitute an extrapolation and a complementary investigation of the preliminary results already achieved on a two cell PEFC stack and which had demonstrated the capability of the reverse diode to electrically isolate a fuel cell stack under fault. The proposed experiments focus on the dynamic behaviour of the stack under degraded working modes and point out the key-role of the fuel cell stack impedance in the triggering of the anti-parallel diode switching

    A Kato type Theorem for the inviscid limit of the Navier-Stokes equations with a moving rigid body

    Full text link
    The issue of the inviscid limit for the incompressible Navier-Stokes equations when a no-slip condition is prescribed on the boundary is a famous open problem. A result by Tosio Kato says that convergence to the Euler equations holds true in the energy space if and only if the energy dissipation rate of the viscous flow in a boundary layer of width proportional to the viscosity vanishes. Of course, if one considers the motion of a solid body in an incompressible fluid, with a no-slip condition at the interface, the issue of the inviscid limit is as least as difficult. However it is not clear if the additional difficulties linked to the body's dynamic make this issue more difficult or not. In this paper we consider the motion of a rigid body in an incompressible fluid occupying the complementary set in the space and we prove that a Kato type condition implies the convergence of the fluid velocity and of the body velocity as well, what seems to indicate that an answer in the case of a fixed boundary could also bring an answer to the case where there is a moving body in the fluid

    Well-posedness of boundary layer equations for time-dependent flow of non-Newtonian fluids

    Full text link
    We consider the flow of an upper convected Maxwell fluid in the limit of high Weissenberg and Reynolds number. In this limit, the no-slip condition cannot be imposed on the solutions. We derive equations for the resulting boundary layer and prove the well-posedness of these equations. A transformation to Lagrangian coordinates is crucial in the argument

    Possible large phase in psi(2S) -> 1-0- Decays

    Full text link
    The strong and the electromagnetic amplitudes are analyzed on the basis of the measurements of J/psi, psi(2S) -> 1-0- in e+e- experiments. The currently available experimental information is revised with inclusion of the contribution from e+e- -> gamma * -> 1-0- . The study shows that a large phase around minus 90 degree between the strong and the electromagnetic amplitudes could not be ruled out by the experimental data for psi(2S).Comment: 4 page

    On the dynamics of WKB wave functions whose phase are weak KAM solutions of H-J equation

    Full text link
    In the framework of toroidal Pseudodifferential operators on the flat torus Tn:=(R/2πZ)n\Bbb T^n := (\Bbb R / 2\pi \Bbb Z)^n we begin by proving the closure under composition for the class of Weyl operators Opℏw(b)\mathrm{Op}^w_\hbar(b) with simbols b∈Sm(Tn×Rn)b \in S^m (\mathbb{T}^n \times \mathbb{R}^n). Subsequently, we consider Opℏw(H)\mathrm{Op}^w_\hbar(H) when H=12∣η∣2+V(x)H=\frac{1}{2} |\eta|^2 + V(x) where V∈C∞(Tn;R)V \in C^\infty (\Bbb T^n;\Bbb R) and we exhibit the toroidal version of the equation for the Wigner transform of the solution of the Schr\"odinger equation. Moreover, we prove the convergence (in a weak sense) of the Wigner transform of the solution of the Schr\"odinger equation to the solution of the Liouville equation on Tn×Rn\Bbb T^n \times \Bbb R^n written in the measure sense. These results are applied to the study of some WKB type wave functions in the Sobolev space H1(Tn;C)H^{1} (\mathbb{T}^n; \Bbb C) with phase functions in the class of Lipschitz continuous weak KAM solutions (of positive and negative type) of the Hamilton-Jacobi equation 12∣P+∇xv±(P,x)∣2+V(x)=Hˉ(P)\frac{1}{2} |P+ \nabla_x v_\pm (P,x)|^2 + V(x) = \bar{H}(P) for P∈ℓZnP \in \ell \Bbb Z^n with ℓ>0\ell >0, and to the study of the backward and forward time propagation of the related Wigner measures supported on the graph of P+∇xv±P+ \nabla_x v_\pm

    Displacements analysis of self-excited vibrations in turning

    Full text link
    The actual research deals with determining by a new protocol the necessary parameters considering a three-dimensional model to simulate in a realistic way the turning process on machine tool. This paper is dedicated to the experimental displacements analysis of the block tool / block workpiece with self-excited vibrations. In connexion with turning process, the self-excited vibrations domain is obtained starting from spectra of two accelerometers. The existence of a displacements plane attached to the tool edge point is revealed. This plane proves to be inclined compared to the machines tool axes. We establish that the tool tip point describes an ellipse. This ellipse is very small and can be considered as a small straight line segment for the stable cutting process (without vibrations). In unstable mode (with vibrations) the ellipse of displacements is really more visible. A difference in phase occurs between the tool tip displacements on the radial direction and on the cutting one. The feed motion direction and the cutting one are almost in phase. The values of the long and small ellipse axes (and their ratio) shows that these sizes are increasing with the feed rate value. The axis that goes through the stiffness center and the tool tip represents the maximum stiffness direction. The maximum (resp. minimum) stiffness axis of the tool is perpendicular to the large (resp. small) ellipse displacements axis. FFT analysis of the accelerometers signals allows to reach several important parameters and establish coherent correlations between tool tip displacements and the static - elastic characteristics of the machine tool components tested

    Semi-inclusive B Decays and Direct CP Violation in QCD Factorization

    Get PDF
    We have systematically investigated the semi-inclusive B decays B->MX, which are manifestations of the quark decay b->Mq, within the framework of QCD-improved factorization. These decays are theoretically clean and have distinctive experimental signatures. We focus on a class of these that do not require any form factor information and therefore may be especially suitable for extracting information on the angles α\alpha and Îł\gamma of the unitarity triangle. The nonfactorizable effects, such as vertex-type and penguin-type corrections to the two-body b decay and hard spectator corrections to the 3-body decay are calculable in the heavy quark limit. QCD factorization is applicable when the emitted meson is a light meson or a charmonium. We discuss the issue of the CPT constraint on partial rate asymmetries. The strong phase coming from final-state rescattering due to hard gluon exchange between the final states can induce large rate asymmetries for tree-dominated color-suppressed modes (π0,ρ0,ω)Xsˉ(\pi^0,\rho^0,\omega)X_{\bar s}. The nonfactorizable hard spectator interactions in the 3-body decay, though phase-space suppressed, are extremely important for the tree-dominated modes (π0,ρ0,ω)Xsˉ,ϕX(\pi^0,\rho^0,\omega)X_{\bar s}, \phi X, JXs,JXJ X_s,J X and the penguin-dominated mode ωXssˉ\omega X_{s\bar s}. In fact, they are dominated by the hard spectator corrections. Our result for B(B→J/ψXs){\cal B} (B\to J/\psi X_s) is in agreement with experiment. The semi-inclusive decay modes: Bs0→(π0,ρ0,ω)XsˉB^0_s\to (\pi^0,\rho^0,\omega)X_{\bar s}, ρ0Xssˉ\rho^0X_{s\bar s}, B0→(K−X,K∗−X)B^0\to(K^-X,K^{*-}X) and B−→(K0Xs,K∗0Xs)B^-\to (K^0X_s,K^{*0}X_s) are the most promising ones in searching for direct CP violation. In fact, they have branching ratios of order 10−6−10−410^{-6}-10^{-4} and CP rate asymmetries of order (10−40)(10-40)%.Comment: 28 page

    Controlling spin relaxation with a cavity

    Get PDF
    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the spontaneous emission rate can be strongly enhanced by placing the quantum system in a resonant cavity -an effect which has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, underpinning single-photon sources. Here we report the first application of these ideas to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity of high quality factor and small mode volume, we reach for the first time the regime where spontaneous emission constitutes the dominant spin relaxation mechanism. The relaxation rate is increased by three orders of magnitude when the spins are tuned to the cavity resonance, showing that energy relaxation can be engineered and controlled on-demand. Our results provide a novel and general way to initialise spin systems into their ground state, with applications in magnetic resonance and quantum information processing. They also demonstrate that, contrary to popular belief, the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point where quantum fluctuations have a dramatic effect on the spin dynamics; as such our work represents an important step towards the coherent magnetic coupling of individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl

    Combining CP Asymmetries in B→KπB \to K \pi Decays

    Full text link
    We prove an approximate relation, to leading order in dominant terms, between CP-violating rate differences in B0/Bˉ0→K±π∓B^0/\bar{B}^0 \to K^{\pm}\pi^{\mp} and B±→K±π0B^{\pm} \to K^{\pm}\pi^0. We show how data from these two processes may be combined in order to enhance the significance of a nonzero result.Comment: 9 pages, latex, no figures, submitted to Phys. Rev. Letters, revise
    • 

    corecore