6 research outputs found

    Papel de SLU7 en la diferenciación hepática y en la protección del hígado frente al daño: regulación de HNF4A

    Get PDF
    El hígado es un órgano con un papel central en el organismo puesto que realiza numerosas funciones esenciales para mantener la homeostasis sistémica. A nivel histológico, el hígado presenta una arquitectura compleja y muy organizada, formada por diferentes poblaciones celulares que desarrollan funciones concretas y, en conjunto, permiten el correcto funcionamiento del órgano. Así, el hígado está formado por las células parenquimales que incluyen a los hepatocitos y a los colangiocitos, y las células no parenquimales, que engloban a las células estrelladas hepáticas (HSC, hepatic stellate cells), las células de Kupffer o las células endoteliales sinusoidales. La población celular más abundante son los hepatocitos, que constituyen alrededor de un 80 % de la masa hepática total, y son los que más contribuyen al desarrollo de la función hepática. Se trata de unas células epiteliales polarizadas, muy diferenciadas y quiescentes, aunque presentan una gran capacidad de regeneración en respuesta a estímulos nocivos 1–4 . Las células hepáticas se organizan en el hígado alrededor de una estructura anatómica peculiar y compleja, determinada por el patrón del flujo sanguíneo, y que es esencial para que se puedan llevar a cabo las funciones hepáticas. Brevemente, el hígado recibe sangre de la vena porta rica en nutrientes y productos de deshecho, y sangre de la arteria hepática rica en oxígeno, que fluye a través de una red de capilares sinusoidales entre las células hepáticas, hasta drenar en las venas centrales. Junto a las venas porta y las arterias hepáticas se encuentran los conductos biliares que conducen la bilis hasta la vesícula biliar y el intestino, y los tres conductos juntos forman la triada portal. La unidad funcional del hígado son los lobulillos hepáticos, que consisten en fragmentos poligonales de células hepáticas dispuestas en torno a una vena central y rodeadas de triadas portales. Los capilares sinusoidales conectan la vena central con los espacios porta y, en paralelo a ellos, se organizan los hepatocitos formando cordones gruesos unicelulares (Figura 1A). Tanto la vena porta como la arteria hepática suministran la sangre a los hepatocitos conforme fluye a través de la red de sinusoides hasta drenar en las venas centrales. En función de si los hepatocitos se localizan más cerca de la región periportal o más cerca de la región pericentral, presentan diferencias fenotípicas en cuanto a la expresión de enzimas metabólicas, por lo que realizan funciones metabólicas diferentes. Esta distribución diferencial de las funciones metabólicas y secretoras del hígado a lo largo del eje porto-central se conoce como zonación, y constituye un marcador clave de la maduración hepática (Figura 1B) 1–5

    Splicing factor SLU7 prevents oxidative stress-mediated hepatocyte nuclear factor 4α degradation, preserving hepatic differentiation and protecting from liver damage

    Get PDF
    Background and Aims: Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4α (HNF4α) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. Approach and Results: Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4α, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7+/−) mice undergoing chronic (CCl4) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4-injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4α P1 to P2 usage. This response was reproduced in Slu7+/− mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4α1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell’s antioxidant machinery. Conclusions: Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury.Supported by MINECO/AEI/FEDER (UE SAF2016‐75972‐R, PID2019‐104265RB‐I00/AEI/10.13039/501100011033, and PID2019‐104878RB‐100/AEI/10.13039/501100011033), CIBERehd, Fundación La Caixa (HEPACARE), an AECC postdoctoral fellowship (POSTD18014AREC, to M.A.), a Ministerio de Educación FPU fellowship (FPU18/01461, to M.G.R.), a Ministerio de Educación FPI fellowship (BES‐2017‐079883, to M.R.); a Ramón y Cajal Program contract (RYC2018‐024475‐1, to M.G.F.B.), the Fundación Eugenio Rodríguez Pascual, the Fundación Mario Losantos, the Fundación M. Torres, and a generous donation from Mr. Eduardo Avila

    Papel de SLU7 en la diferenciación hepática y en la protección del hígado frente al daño: regulación de HNF4A

    Get PDF
    El hígado es un órgano con un papel central en el organismo puesto que realiza numerosas funciones esenciales para mantener la homeostasis sistémica. A nivel histológico, el hígado presenta una arquitectura compleja y muy organizada, formada por diferentes poblaciones celulares que desarrollan funciones concretas y, en conjunto, permiten el correcto funcionamiento del órgano. Así, el hígado está formado por las células parenquimales que incluyen a los hepatocitos y a los colangiocitos, y las células no parenquimales, que engloban a las células estrelladas hepáticas (HSC, hepatic stellate cells), las células de Kupffer o las células endoteliales sinusoidales. La población celular más abundante son los hepatocitos, que constituyen alrededor de un 80 % de la masa hepática total, y son los que más contribuyen al desarrollo de la función hepática. Se trata de unas células epiteliales polarizadas, muy diferenciadas y quiescentes, aunque presentan una gran capacidad de regeneración en respuesta a estímulos nocivos 1–4 . Las células hepáticas se organizan en el hígado alrededor de una estructura anatómica peculiar y compleja, determinada por el patrón del flujo sanguíneo, y que es esencial para que se puedan llevar a cabo las funciones hepáticas. Brevemente, el hígado recibe sangre de la vena porta rica en nutrientes y productos de deshecho, y sangre de la arteria hepática rica en oxígeno, que fluye a través de una red de capilares sinusoidales entre las células hepáticas, hasta drenar en las venas centrales. Junto a las venas porta y las arterias hepáticas se encuentran los conductos biliares que conducen la bilis hasta la vesícula biliar y el intestino, y los tres conductos juntos forman la triada portal. La unidad funcional del hígado son los lobulillos hepáticos, que consisten en fragmentos poligonales de células hepáticas dispuestas en torno a una vena central y rodeadas de triadas portales. Los capilares sinusoidales conectan la vena central con los espacios porta y, en paralelo a ellos, se organizan los hepatocitos formando cordones gruesos unicelulares (Figura 1A). Tanto la vena porta como la arteria hepática suministran la sangre a los hepatocitos conforme fluye a través de la red de sinusoides hasta drenar en las venas centrales. En función de si los hepatocitos se localizan más cerca de la región periportal o más cerca de la región pericentral, presentan diferencias fenotípicas en cuanto a la expresión de enzimas metabólicas, por lo que realizan funciones metabólicas diferentes. Esta distribución diferencial de las funciones metabólicas y secretoras del hígado a lo largo del eje porto-central se conoce como zonación, y constituye un marcador clave de la maduración hepática (Figura 1B) 1–5

    SLU7: a new hub of gene expression regulation-from epigenetics to protein stability in health and disease

    Get PDF
    SLU7 (Splicing factor synergistic lethal with U5 snRNA 7) was first identified as a splicing factor necessary for the correct selection of 3 ' splice sites, strongly impacting on the diversity of gene transcripts in a cell. More recent studies have uncovered new and non-redundant roles of SLU7 as an integrative hub of different levels of gene expression regulation, including epigenetic DNA remodeling, modulation of transcription and protein stability. Here we review those findings, the multiple factors and mechanisms implicated as well as the cellular functions affected. For instance, SLU7 is essential to secure liver differentiation, genome integrity acting at different levels and a correct cell cycle progression. Accordingly, the aberrant expression of SLU7 could be associated with human diseases including cancer, although strikingly, it is an essential survival factor for cancer cells. Finally, we discuss the implications of SLU7 in pathophysiology, with particular emphasis on the progression of liver disease and its possible role as a therapeutic target in human cancer

    Splicing factor SLU7 prevents oxidative stress-mediated hepatocyte nuclear factor 4α degradation, preserving hepatic differentiation and protecting from liver damage

    No full text
    Background and aims: Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4α (HNF4α) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. Approach and results: Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4α, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7+/- ) mice undergoing chronic (CCl4 ) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4 -injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4α P1 to P2 usage. This response was reproduced in Slu7+/- mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4α1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell's antioxidant machinery. Conclusions: Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury

    Splicing factor SLU7 prevents oxidative stress-mediated hepatocyte nuclear factor 4α degradation, preserving hepatic differentiation and protecting from liver damage

    No full text
    Background and aims: Hepatocellular dedifferentiation is emerging as an important determinant in liver disease progression. Preservation of mature hepatocyte identity relies on a set of key genes, predominantly the transcription factor hepatocyte nuclear factor 4α (HNF4α) but also splicing factors like SLU7. How these factors interact and become dysregulated and the impact of their impairment in driving liver disease are not fully understood. Approach and results: Expression of SLU7 and that of the adult and oncofetal isoforms of HNF4α, driven by its promoter 1 (P1) and P2, respectively, was studied in diseased human and mouse livers. Hepatic function and damage response were analyzed in wild-type and Slu7-haploinsufficient/heterozygous (Slu7+/- ) mice undergoing chronic (CCl4 ) and acute (acetaminophen) injury. SLU7 expression was restored in CCl4 -injured mice using SLU7-expressing adeno-associated viruses (AAV-SLU7). The hepatocellular SLU7 interactome was characterized by mass spectrometry. Reduced SLU7 expression in human and mouse diseased livers correlated with a switch in HNF4α P1 to P2 usage. This response was reproduced in Slu7+/- mice, which displayed increased sensitivity to chronic and acute liver injury, enhanced oxidative stress, and marked impairment of hepatic functions. AAV-SLU7 infection prevented liver injury and hepatocellular dedifferentiation. Mechanistically we demonstrate a unique role for SLU7 in the preservation of HNF4α1 protein stability through its capacity to protect the liver against oxidative stress. SLU7 is herein identified as a key component of the stress granule proteome, an essential part of the cell's antioxidant machinery. Conclusions: Our results place SLU7 at the highest level of hepatocellular identity control, identifying SLU7 as a link between stress-protective mechanisms and liver differentiation. These findings emphasize the importance of the preservation of hepatic functions in the protection from liver injury
    corecore