856 research outputs found

    Latent Class Analysis of University Lecturers' Switch to Online Teaching during the First COVID-19 Lockdown: The Role of Educational Technology, Self-Efficacy, and Institutional Support

    Get PDF
    The switch to emergency remote teaching (ERT) due to the first COVID-19 lockdown demanded a lot from university lecturers yet did not pose the same challenge to all of them. This study sought to explain differences among lecturers ( n = 796) from universities in France, Germany, Switzerland, and the UK in their use of educational technology for teaching, institutional support, and personal factors. Guided by the Social Cognitive Theory (SCT), lecturers' behavior (educational technology use), environment (institutional support), and personal factors (ERT self-efficacy, continuance intentions, and demographics) were examined. Latent class analysis was employed to identify different types of lecturers in view of educational technology use, while multinomial regression and Wald chi-square test were used to distinguish classes. The largest latent class were Presenters (45.6%), who focused on content delivery, followed by Strivers (22.1%), who strived for social interaction, Routineers (19.6%), who were ready for online teaching, and Evaders (12.7%), who evaded using technology for educational purposes. Both personal factors and perceived institutional support explained class membership significantly. Accordingly, Evaders were older, less experienced, and rarely perceived institutional support as useful. Routineers , the Evaders' counterparts, felt most self-efficient in ERT and held the highest continuance intentions for educational technology use. This research suggests that universities engage lecturers in evidence-based professional development that seeks shared visions of digital transformation, networks and communities, and design-based research

    Twenty-four or Four-and-twenty : Language Modulates Cross-Modal Matching for Multi-Digit Numbers in Children and Adults

    Get PDF
    Does number–word structure have a long-lasting impact on transcoding? Contrary to English, German number words comprise decade–unit inversion (e.g., vierundzwanzig is literally translated as four-and-twenty). To investigate the mental representation of numbers, we tested the effect of visual and linguistic–morphological characteristics on the development of verbal–visual transcoding. In a longitudinal cross-linguistic design, response times (RTs) in a number-matching experiment were analyzed in Grade 2 (119 German-speaking and 179 English-speaking children) and in Grade 3 (131 German-speaking and 160 English-speaking children). To test for long-term effects, the same experiment was given to 38 German-speaking and 42 English-speaking adults. Participants needed to decide whether a spoken number matched a subsequent visual Arabic number. Systematic variation of digits in the nonmatching distractors allowed comparison of three different transcoding accounts (lexicalization, visual, and linguistic–morphological). German speakers were generally slower in rejecting inverted number distractors than English speakers. Across age groups, German speakers were more distracted by Arabic numbers that included the correct unit digit, whereas English speakers showed stronger distraction when the correct decade digit was included. These RT patterns reflect differences in number–word morphology. The individual cost of rejecting an inverted distractor (inversion effect) predicted arithmetic skills in German-speaking second-graders only. The moderate relationship between the efficiency to identify a matching number and arithmetic performance could be observed cross-linguistically in all age groups but was not significant in German-speaking adults. Thus, findings provide consistent evidence of a persistent impact of number–word structure on number processing, whereas the relationship with arithmetic performance was particularly pronounced in young children

    Language effects in early development of number writing and reading

    Get PDF
    Reading and writing multi-digit numbers requires accurate switching between Arabic numbers and spoken number words. This is particularly challenging in languages with number word inversion such as German (24 is pronounced as four-and-twenty) as reported by Zuber, Pixner, Moeller, and Nuerk (2009). The current study aimed to replicate the qualitative error analysis by Zuber et al. and further extended their study in a number of critical ways: (1) A cross-linguistic (German, English) analysis enabled us to differentiate between language-dependent and more general challenges of transcoding. (2) We investigated whether specific number structures influence accuracy rates. (3) To consider both transcoding directions (from Arabic numbers to number words and vice versa), we assessed performance for number reading in addition to number writing. (4) Our longitudinal design allowed us to investigate the development of transcoding between Grades 1 and 2. We assessed 170 German- and 264 English-speaking children. Children wrote and read the same set of 44 one-, two- and three- digit numbers including the same number structures as Zuber et al. For German, we confirmed that a high amount of errors in number writing was inversion-related. For English, the percentage of inversion-related errors was very low. Accuracy rates were strongly related to number syntax. The impact of number structures was independent of transcoding direction or grade level and revealed cross-linguistic challenges of reading and writing multi-digit numbers. For instance, transcoding of three-digit numbers containing a syntactic zero (e.g., 109) was significantly more accurate than transcoding of items with a lexical zero (e.g., 190). Based on our findings we suggest adaptations of current transcoding models

    Common and distinct predictors of non-symbolic and symbolic ordinal number processing across the early primary school years

    Get PDF
    What are the cognitive mechanisms supporting non-symbolic and symbolic order processing? Preliminary evidence suggests that non-symbolic and symbolic order processing are partly distinct constructs. The precise mechanisms supporting these skills, however, are still unclear. Moreover, predictive patterns may undergo dynamic developmental changes during the first years of formal schooling. This study investigates the contribution of theoretically relevant constructs (non-symbolic and symbolic magnitude comparison, counting and storage and manipulation components of verbal and visuo-spatial working memory) to performance and developmental change in non-symbolic and symbolic numerical order processing. We followed 157 children longitudinally from Grade 1 to 3. In the order judgement tasks, children decided whether or not triplets of dots or digits were arranged in numerically ascending order. Non-symbolic magnitude comparison and visuo-spatial manipulation were significant predictors of initial performance in both non-symbolic and symbolic ordering. In line with our expectations, counting skills contributed additional variance to the prediction of symbolic, but not of non-symbolic ordering. Developmental change in ordering performance from Grade 1 to 2 was predicted by symbolic comparison skills and visuo-spatial manipulation. None of the predictors explained variance in developmental change from Grade 2 to 3. Taken together, the present results provide robust evidence for a general involvement of pair-wise magnitude comparison and visuo-spatial manipulation in numerical ordering, irrespective of the number format. Importantly, counting-based mechanisms appear to be a unique predictor of symbolic ordering. We thus conclude that there is only a partial overlap of the cognitive mechanisms underlying non-symbolic and symbolic order processing

    Rapid “Open-Source” Engineering of Customized Zinc-Finger Nucleases for Highly Efficient Gene Modification

    Get PDF
    Summary—Custom-made zinc-finger nucleases (ZFNs) can induce targeted genome modifications with high efficiency in cell types including Drosophila, C. elegans, plants, and humans. A bottleneck in the application of ZFN technology has been the generation of highly specific engineered zincfinger arrays. Here we describe OPEN (Oligomerized Pool ENgineering), a rapid, publicly available strategy for constructing multi-finger arrays, which we show is more effective than the previously published modular assembly method. We used OPEN to construct 37 highly active ZFN pairs which induced targeted alterations with high efficiencies (1 to 50%) at 11 different target sites located within three endogenous human genes (VEGF-A, HoxB13, CFTR), an endogenous plant gene (tobacco SuRA), and a chromosomally-integrated EGFP reporter gene. In summary, OPEN provides an “opensource” method for rapidly engineering highly active zinc-finger arrays, thereby enabling broader practice, development, and application of ZFN technology for biological research and gene therapy

    Whole number thinking, learning and development: neuro-cognitive, cognitive and developmental approaches

    Get PDF
    The participants of working group 2 presented a broad range of studies, 11 papers in total, related to whole number learning representing research groups from 11 countries as follows. Two large cross-sectional studies focused on developmental aspects of young children’s number learning provide a lens for re-examining ‘traditional’ features of number acquisition. van den Heuvel-Panhuizen (the Netherlands) presented a co-authored paper with Elia (Cyprus; Elia and van den Heuvel-Panhuizen 2015) on a cross-cultural study of kindergartners’ number competence focused on counting, additive and multiplicative thinking. Second, Milinković (2015) examined the development of young Serbian children’s initial understanding of representations of whole numbers and counting strategies in a large study of 3- to 7-year-olds. Children’s invented (formal) representations such as set representation and the number line were found to be limited in their recordings. In a South African study focused on early counting and addition, Roberts (2015) directs attention to the role of teachers by providing a framework to support teachers’ interpretation of young disadvantaged learners’ representations of number when engaging with whole number additive tasks. Some papers reflected the increasing role of neuroscientific concepts and methodologies utilised in research on WNA learning and development. Sinclair and Coles (2015) drew upon neuroscientific research to highlight the significant role of symbol-to-symbol connections and the use of fingers and touch counting exempli- fied by the TouchCounts iPad app. Gould (2015) reported aspects of a large Australian large study of children in the first years of schooling aimed at improving numeracy and literacy in disadvantaged communities. A case study exemplified how numerals were identified by relying on a mental number line by using location to retrieve number names. This raised the question addressed in the neuroscientific work of Dehaene and other papers focused on individual differences in how the brain processes numbers. The Italian PerContare1 project (Baccaglini-Frank 2015) built upon the collaboration between cognitive psychologists and mathematics educators, aimed at developing teaching strategies for preventing and addressing early low achievement in arithmetic. It takes an innovative approach to the development of number sense that is grounded upon a kinaesthetic and visual-spatial approach to part-whole relationships. Mulligan and Woolcott (2015) provided a discussion paper on the underlying nature of number. They presented a broader view of mathematics learning (including WNA) as linked to spatial interaction with the environment; the concept of connectivity across concepts and the development of underlying pattern and structural relationships are central to their approach

    CpG-Methylation Regulates a Class of Epstein-Barr Virus Promoters

    Get PDF
    DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian gene regulation. In general, cytosine-phosphatidyl-guanosine (CpG)-methylated promoters are transcriptionally repressed and nuclear proteins such as MECP2, MBD1, MBD2, and MBD4 bind CpG-methylated DNA and contribute to epigenetic silencing. Methylation of viral DNA also regulates gene expression of Epstein-Barr virus (EBV), which is a model of herpes virus latency. In latently infected human B cells, the viral DNA is CpG-methylated, the majority of viral genes is repressed and virus synthesis is therefore abrogated. EBV's BZLF1 encodes a transcription factor of the AP-1 family (Zta) and is the master gene to overcome viral gene repression. In a genome-wide screen, we now identify and characterize those viral genes, which Zta regulates. Among them are genes essential for EBV's lytic phase, which paradoxically depend on strictly CpG-methylated promoters for their Zta-induced expression. We identified novel DNA recognition motifs, termed meZRE (methyl-Zta-responsive element), which Zta selectively binds in order to ‘read’ DNA in a methylation- and sequence-dependent manner unlike any other known protein. Zta is a homodimer but its binding characteristics to meZREs suggest a sequential, non-palindromic and bipartite DNA recognition element, which confers superior DNA binding compared to CpG-free ZREs. Our findings indicate that Zta has evolved to transactivate cytosine-methylated, hence repressed, silent promoters as a rule to overcome epigenetic silencing
    • 

    corecore