17 research outputs found

    Advances in structure elucidation of small molecules using mass spectrometry

    Get PDF
    The structural elucidation of small molecules using mass spectrometry plays an important role in modern life sciences and bioanalytical approaches. This review covers different soft and hard ionization techniques and figures of merit for modern mass spectrometers, such as mass resolving power, mass accuracy, isotopic abundance accuracy, accurate mass multiple-stage MS(n) capability, as well as hybrid mass spectrometric and orthogonal chromatographic approaches. The latter part discusses mass spectral data handling strategies, which includes background and noise subtraction, adduct formation and detection, charge state determination, accurate mass measurements, elemental composition determinations, and complex data-dependent setups with ion maps and ion trees. The importance of mass spectral library search algorithms for tandem mass spectra and multiple-stage MS(n) mass spectra as well as mass spectral tree libraries that combine multiple-stage mass spectra are outlined. The successive chapter discusses mass spectral fragmentation pathways, biotransformation reactions and drug metabolism studies, the mass spectral simulation and generation of in silico mass spectra, expert systems for mass spectral interpretation, and the use of computational chemistry to explain gas-phase phenomena. A single chapter discusses data handling for hyphenated approaches including mass spectral deconvolution for clean mass spectra, cheminformatics approaches and structure retention relationships, and retention index predictions for gas and liquid chromatography. The last section reviews the current state of electronic data sharing of mass spectra and discusses the importance of software development for the advancement of structure elucidation of small molecules

    Genome sequence of the palaeopolyploid soybean

    Get PDF
    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties. All supplemental information is included in the downloadable PDF file, except for the data file for Supplementary Table S5, which is attached (below) as an Additional file

    Mechanism of induction of complement susceptibility of erythrocytes by spider and bacterial sphingomyelinases

    No full text
    We have recently shown that the sphingomyelinase toxins P1 and P2 from the venom of the spider Loxosceles intermedia induce complement (C)-dependent lysis of autologous erythrocytes by induction of the cleavage of cell surface glycophorins through activation of an endogenous metalloproteinase facilitating the activation of the alternative pathway of C. Phospholipase D (PLD) from Corynebacterium pseudotuberculosis shows some degree of homology with the spider sphingomyelinases and can induce similar clinical symptoms to those observed after spider envenomation. The aim of this study was to investigate if the bacterial PLD-induced haemolysis of human erythrocytes was C dependent and if cleavage of glycophorins occurred. We show here that haemolysis of both PLD- and P1-treated human erythrocytes was C dependent, but while PLD-mediated haemolysis was dependent on activation of the classical pathway of C, P1 induced lysis via both the classical and alternative pathways. P1, but not PLD, induced cleavage of glycophorins and no change in expression of complement regulators was induced by either of the toxins. In both cases, annexin V binding sites were exposed, suggesting that the membrane asymmetry had been disturbed causing exposure of phosphatidylserine to the cell surface. Our results suggest that C susceptibility induced by L. intermedia and C. pseudotuberculosis PLD is a result of exposure of phosphatidylserine, and the higher potency of P1 toxin can be explained by its additional effect of cleavage of glycophorins
    corecore