72 research outputs found
Resveratrol increases BRCA1 and BRCA2 mRNA expression in breast tumour cell lines
International audienceThe phytochemical resveratrol, found in grapes, berries and peanuts, has been found to possess cancer chemopreventive effects by inhibiting diverse cellular events associated with tumour initiation, promotion and progression. Resveratrol is also a phyto-oestrogen, binds to and activates oestrogen receptors that regulate the transcription of oestrogen-responsive target genes such as the breast cancer susceptibility genes BRCA1 and BRCA2. We investigated the effects of resveratrol on BRCA1 and BRCA2 expression in human breast cancer cell lines (MCF7, HBL 100 and MDA-MB 231) using quantitative real-time RT-PCR, and by perfusion chromatography of the proteins. All cell lines were treated with 30 microM resveratrol. The expressions of BRCA1 and BRCA2 mRNAs were increased although no change in the expression of the proteins were found. These data indicate that resveratrol at 30 micro M can increase expression of genes involved in the aggressiveness of human breast tumour cell lines
A selective eradication of human nonhereditary breast cancer cells by phenanthridine-derived polyADP-ribose polymerase inhibitors
INTRODUCTION: PARP-1 (polyADP-ribose polymerase-1) is known to be activated in response to DNA damage, and activated PARP-1 promotes DNA repair. However, a recently disclosed alternative mechanism of PARP-1 activation by phosphorylated externally regulated kinase (ERK) implicates PARP-1 in a vast number of signal-transduction networks in the cell. Here, PARP-1 activation was examined for its possible effects on cell proliferation in both normal and malignant cells. METHODS: In vitro (cell cultures) and in vivo (xenotransplants) experiments were performed. RESULTS: Phenanthridine-derived PARP inhibitors interfered with cell proliferation by causing G2/M arrest in both normal (human epithelial cells MCF10A and mouse embryonic fibroblasts) and human breast cancer cells MCF-7 and MDA231. However, whereas the normal cells were only transiently arrested, G2/M arrest in the malignant breast cancer cells was permanent and was accompanied by a massive cell death. In accordance, treatment with a phenanthridine-derived PARP inhibitor prevented the development of MCF-7 and MDA231 xenotransplants in female nude mice. Quiescent cells (neurons and cardiomyocytes) are not impaired by these PARP inhibitors. CONCLUSIONS: These results outline a new therapeutic approach for a selective eradication of abundant nonhereditary human breast cancers
Resveratrol Inhibits Cancer Cell Metabolism by Down Regulating Pyruvate Kinase M2 via Inhibition of Mammalian Target of Rapamycin
Metabolism of cancer cells with pyruvate kinase M2 (PKM2) at its centre stage has assumed a prime significance in cancer research in recent times. Cancer cell metabolism, characterized by enhanced glucose uptake, production of lactate and anabolism is considered an ideal target for therapeutic interventions. Expression of PKM2 switches metabolism in favor of cancer cells, therefore, the present study was designed to investigate the hitherto unknown effect of resveratrol, a phytoalexin, on PKM2 expression and resultant implications on cancer metabolism. We observed that resveratrol down-regulated PKM2 expression by inhibiting mTOR signaling and suppressed cancer metabolism, adjudged by decreased glucose uptake, lactate production (aerobic glycolysis) and reduced anabolism (macromolecule synthesis) in various cancer cell lines. A contingent decrease in intracellular levels of ribose-5-phosphate (R5P), a critical intermediate of pentose phosphate pathway, accounted for a reduced anabolism. Consequently, the state of suppressed cancer metabolism resulted in decreased cellular proliferation. Interestingly, shRNA-mediated silencing of PKM2 inhibited glucose uptake and lactate production, providing evidence for the critical role of PKM2 and its mediation in the observed effects of resveratrol on cancer metabolism. Further, an over-expression of PKM2 abolished the observed effects of resveratrol, signifying the role of PKM2 downregulation as a critical function of resveratrol. The study reports a novel PKM2-mediated effect of resveratrol on cancer metabolism and provides a new dimension to its therapeutic potential
Viability of Bifidobacterium longum in cheddar cheese curd during manufacture and storage: effect of microencapsulation and point of inoculation
International audienceThe goal of this study was to assess the effect of methods of inoculation on the viability of probiotic bacteria during cheddar cheese manufacture as well as their stability during storage. Bifidobacterium longum ATCC 15708 was freeze-dried and microencapsulated by spray-coating. The effect of inoculation of free whole cell or microencapsulated cells at three points during manufacture (milk before renneting, at cheddaring or at salting) on the viable counts in cheese and whey was investigated. Microencapsulation had no effect on viable counts, chemical parameters (lactose, lactic acid, total nitrogen, nitrogen soluble in TCA, moisture) or sensory properties during manufacturing or storage of the fresh cheeses for 14 days. Inoculation of the bifidobacteria in milk before renneting resulted in higher viable counts in comparison to other points of inoculation. Bifidobacteria added at the salting step, which survived pressing, were subsequently more stable during storage than those inoculated in milk. The stability of B. longum 15708 during storage was greater in the pressed cheeses that in the free curds. The results of this study provides technological data for cheese makers on the optimum point of inoculation as well as the benefit of pressing the curds in order to ensure high levels of probiotics in fresh cheddar cheese
Protodesylilation of 2,6-disubstituted silylphosphinines. Experimental and theoretical study.
NoteInternational audienc
Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude
Author summary Across their native range species encounter a diversity of habitats promoting local adaptation of geographically distributed populations. While local adaptation is widespread, much has yet to be discovered about the conditions of its emergence, the targeted traits, their molecular determinants and the underlying ecological drivers. Here we employed a reverse ecology approach, combining phenotypes and genotypes, to mine the determinants of local adaptation of teosinte populations distributed along two steep altitudinal gradients in Mexico. Evaluation of 11 populations in two common gardens located at mid-elevation pointed to adaptation via an altitudinal multivariate syndrome, in spite of gene flow. We scanned genomes to identify loci with allele frequency shifts along elevation, a subset of which associated to trait variation. Because elevation mimics climate change through space, these polymorphisms may be relevant for future maize breeding.Peer reviewe
- …