7,921 research outputs found
Liquid compressibility effects during the collapse of a single cavitating bubble
The effect of liquid compressibility on the dynamics of a single, spherical cavitating bubble is studied.
While it is known that compressibility damps the amplitude of bubble rebounds, the extent to which
this effect is accurately captured by weakly compressible versions of the Rayleigh–Plesset equation is
unclear. To clarify this issue, partial differential equations governing conservation of mass, momentum,
and energy are numerically solved both inside the bubble and in the surrounding compressible
liquid. Radiated pressure waves originating at the unsteady bubble interface are directly captured.
Results obtained with Rayleigh–Plesset type equations accounting for compressibility effects, proposed
by Keller and Miksis [J. Acoust. Soc. Am. 68, 628–633 (1980)], Gilmore, and Tomita and
Shima [Bull. JSME 20, 1453–1460 (1977)], are compared with those resulting from the full model.
For strong collapses, the solution of the latter reveals that an important part of the energy concentrated
during the collapse is used to generate an outgoing pressure wave. For the examples considered in
this research, peak pressures are larger than those predicted by Rayleigh–Plesset type equations,
whereas the amplitudes of the rebounds are smaller
Electronic structure of few-electron concentric double quantum rings
The ground state structure of few-electron concentric double quantum rings is
investigated within the local spin density approximation. Signatures of
inter-ring coupling in the addition energy spectrum are identified and
discussed. We show that the electronic configurations in these structures can
be greatly modulated by the inter-ring distance: At short and long distances
the low-lying electron states localize in the inner and outer rings,
respectively, and the energy structure is essentially that of an isolated
single quantum ring. However, at intermediate distances the electron states
localized in the inner and the outer ring become quasi-degenerate and a rather
entangled, strongly-correlated system is formed.Comment: 16 pages (preprint format), 6 figure
Optical response of two-dimensional few-electron concentric double quantum rings: A local-spin-density-functional theory study
We have investigated the dipole charge- and spin-density response of
few-electron two-dimensional concentric nanorings as a function of the
intensity of a perpendicularly applied magnetic field. We show that the dipole
response displays signatures associated with the localization of electron
states in the inner and outer ring favored by the perpendicularly applied
magnetic field. Electron localization produces a more fragmented spectrum due
to the appearance of additional edge excitations in the inner and outer ring.Comment: To be published in Physical Review
Higher dimensional VSI spacetimes
We present the explicit metric forms for higher dimensional vanishing scalar
invariant (VSI) Lorentzian spacetimes. We note that all of the VSI spacetimes
belong to the higher dimensional Kundt class. We determine all of the VSI
spacetimes which admit a covariantly constant null vector, and we note that in
general in higher dimensions these spacetimes are of Ricci type III and Weyl
type III. The Ricci type N subclass is related to the chiral null models and
includes the relativistic gyratons and the higher dimensional pp-wave
spacetimes. The spacetimes under investigation are of particular interest since
they are solutions of supergravity or superstring theory.Comment: 14 pages, changes in second paragraph of the discussio
Incomplete Distal Renal Tubular Acidosis and Kidney Stones.
Renal tubular acidosis (RTA) is comprised of a diverse group of congenital or acquired diseases with the common denominator of defective renal acid excretion with protean manifestation, but in adults, recurrent kidney stones and nephrocalcinosis are mainly found in presentation. Calcium phosphate (CaP) stones and nephrocalcinosis are frequently encountered in distal hypokalemic RTA type I. Alkaline urinary pH, hypocitraturia, and, less frequently, hypercalciuria are the tripartite lithogenic factors in distal RTA (dRTA) predisposing to CaP stone formation; the latter 2 are also commonly encountered in other causes of urolithiasis. Although the full blown syndrome is easily diagnosed by conventional clinical criteria, an attenuated forme fruste called incomplete dRTA typically evades clinical testing and is only uncovered by provocative acid-loading challenges. Stone formers (SFs) that cannot acidify urine of pHÂ <Â 5.3 during acid loading are considered to have incomplete dRTA. However, urinary acidification capacity is not a dichotomous but rather a continuous trait, so incomplete dRTA is not a distinct entity but may be one end of a spectrum. Recent findings suggest that incomplete dRTA can be attributed to heterozygous carriers of hypofunctional V-ATPase. The value of incomplete dRTA diagnosis by provocative testing and genotyping candidate genes is a valuable research tool, but it remains unclear at the moment whether they alter clinical practice and needs further clarification. No randomized controlled trials have been performed in SFs with dRTA or CaP stones, and until such data are available, treatment of CaP stones are centered on reversing the biochemical abnormalities encountered in the metabolic workup. SFs with type I dRTA should receive alkali therapy, preferentially in the form of K-citrate delivered judiciously to treat the chronic acid retention that drives both stone formation and bone disease
A momentum-conserving, consistent, Volume-of-Fluid method for incompressible flow on staggered grids
The computation of flows with large density contrasts is notoriously
difficult. To alleviate the difficulty we consider a consistent mass and
momentum-conserving discretization of the Navier-Stokes equation.
Incompressible flow with capillary forces is modelled and the discretization is
performed on a staggered grid of Marker and Cell type. The Volume-of-Fluid
method is used to track the interface and a Height-Function method is used to
compute surface tension. The advection of the volume fraction is performed
using either the Lagrangian-Explicit / CIAM (Calcul d'Interface Affine par
Morceaux) method or the Weymouth and Yue (WY) Eulerian-Implicit method. The WY
method conserves fluid mass to machine accuracy provided incompressiblity is
satisfied which leads to a method that is both momentum and mass-conserving. To
improve the stability of these methods momentum fluxes are advected in a manner
"consistent" with the volume-fraction fluxes, that is a discontinuity of the
momentum is advected at the same speed as a discontinuity of the density. To
find the density on the staggered cells on which the velocity is centered, an
auxiliary reconstruction of the density is performed. The method is tested for
a droplet without surface tension in uniform flow, for a droplet suddenly
accelerated in a carrying gas at rest at very large density ratio without
viscosity or surface tension, for the Kelvin-Helmholtz instability, for a
falling raindrop and for an atomizing flow in air-water conditions
- …