51 research outputs found
Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines
<p>Abstract</p> <p>Background</p> <p>In an epitope-based vaccine setting, the use of conserved epitopes would be expected to provide broader protection across multiple strains, or even species, than epitopes derived from highly variable genome regions. Conversely, in a diagnostic and disease monitoring setting, epitopes that are specific to a given pathogen strain, for example, can be used to monitor responses to that particular infectious strain. In both cases, concrete information pertaining to the degree of conservancy of the epitope(s) considered is crucial.</p> <p>Results</p> <p>To assist in the selection of epitopes with the desired degree of conservation, we have developed a new tool to determine the variability of epitopes within a given set of protein sequences. The tool was implemented as a component of the Immune Epitope Database and Analysis Resources (IEDB), and is directly accessible at <url>http://tools.immuneepitope.org/tools/conservancy</url>.</p> <p>Conclusion</p> <p>An epitope conservancy analysis tool was developed to analyze the variability or conservation of epitopes. The tool is user friendly, and is expected to aid in the design of epitope-based vaccines and diagnostics.</p
Protein sequence database for pathogenic arenaviruses
BACKGROUND: Arenaviruses are a family of rodent-borne viruses that cause several hemorrhagic fevers. These diseases can be devastating and are often lethal. Herein, to aid in the design and development of diagnostics, treatments and vaccines for arenavirus infections, we have developed a database containing protein sequences from the seven pathogenic arenaviruses (Junin, Guanarito, Sabia, Machupo, Whitewater Arroyo, Lassa and LCMV). RESULTS: The database currently contains a non-redundant set of 333 protein sequences which were manually annotated. All entries were linked to NCBI and cited PubMed references. The database has a convenient query interface including BLAST search. Sequence variability analyses were also performed and the results are hosted in the database. CONCLUSION: The database is available at and can be used to aid in studies that require proteomic information from pathogenic arenaviruses
ElliPro: a new structure-based tool for the prediction of antibody epitopes
<p>Abstract</p> <p>Background</p> <p>Reliable prediction of antibody, or B-cell, epitopes remains challenging yet highly desirable for the design of vaccines and immunodiagnostics. A correlation between antigenicity, solvent accessibility, and flexibility in proteins was demonstrated. Subsequently, Thornton and colleagues proposed a method for identifying continuous epitopes in the protein regions protruding from the protein's globular surface. The aim of this work was to implement that method as a web-tool and evaluate its performance on discontinuous epitopes known from the structures of antibody-protein complexes.</p> <p>Results</p> <p>Here we present ElliPro, a web-tool that implements Thornton's method and, together with a residue clustering algorithm, the MODELLER program and the Jmol viewer, allows the prediction and visualization of antibody epitopes in a given protein sequence or structure. ElliPro has been tested on a benchmark dataset of discontinuous epitopes inferred from 3D structures of antibody-protein complexes. In comparison with six other structure-based methods that can be used for epitope prediction, ElliPro performed the best and gave an AUC value of 0.732, when the most significant prediction was considered for each protein. Since the rank of the best prediction was at most in the top three for more than 70% of proteins and never exceeded five, ElliPro is considered a useful research tool for identifying antibody epitopes in protein antigens. ElliPro is available at <url>http://tools.immuneepitope.org/tools/ElliPro</url>.</p> <p>Conclusion</p> <p>The results from ElliPro suggest that further research on antibody epitopes considering more features that discriminate epitopes from non-epitopes may further improve predictions. As ElliPro is based on the geometrical properties of protein structure and does not require training, it might be more generally applied for predicting different types of protein-protein interactions.</p
Over-expression of a zeatin O-glucosylation gene in maize leads to growth retardation and tasselseed formation
To study the effects of cytokinin O-glucosylation in monocots, maize (Zea mays L.) transformants harbouring the ZOG1 gene (encoding a zeatin O-glucosyltransferase from Phaseolus lunatus L.) under the control of the constitutive ubiquitin (Ubi) promoter were generated. The roots and leaves of the transformants had greatly increased levels of zeatin-O-glucoside. The vegetative characteristics of hemizygous and homozygous Ubi:ZOG1 plants resembled those of cytokinin-deficient plants, including shorter stature, thinner stems, narrower leaves, smaller meristems, and increased root mass and branching. Transformant leaves had a higher chlorophyll content and increased levels of active cytokinins compared with those of non-transformed sibs. The Ubi:ZOG1 plants exhibited delayed senescence when grown in the spring/summer. While hemizygous transformants had reduced tassels with fewer spikelets and normal viable pollen, homozygotes had very small tassels and feminized tassel florets, resembling tasselseed phenotypes. Such modifications of the reproductive phase were unexpected and demonstrate a link between cytokinins and sex-specific floral development in monocots
- …