99 research outputs found

    The Equation of State of Neutron-Star Matter in Strong Magnetic Fields

    Get PDF
    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach which permits the study of several models which differ in their behavior at high density. Effects of Landau quantization in ultra-strong magnetic fields (B>1014B>10^{14} Gauss) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>1018B>10^{18} Gauss that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultra-strong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of ∣H/B∣|H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields.Comment: 40 pages, 7 figures, accepted for publication in Ap

    Accretion rate and the occurrence of multi-peaked X-ray bursts

    Full text link
    Most Type I X-ray bursts from accreting neutron stars have a lightcurve with a single peak, but there is a rare population of faint bursts that are double or even triple peaked. Suggested mechanisms include polar ignition with equatorial stalling, or multi-step energy release; the latter being caused by hydrodynamic instabilities or waiting points in the nuclear reaction sequence. We present an analysis of the accretion rate dependence of the multi-peak bursts, and discuss the consequences for the various models. The observations pose particular challenges for the polar ignition mechanism given current models of ignition latitude dependence.Comment: 5 pages, 4 figures, accepted for publication in A&A Letter

    Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars II: Finite Temperature Effects

    Full text link
    We present numerical calculations of the equation of state for dense matter in high magnetic fields, using a temperature dependent Thomas-Fermi theory with a magnetic field that takes all Landau levels into account. Free energies for atoms and matter are also calculated as well as profiles of the electron density as a function of distance from the atomic nucleus for representative values of the magnetic field strength, total matter density, and temperature. The Landau shell structure, which is so prominent in cold dense matter in high magnetic fields, is still clearly present at finite temperature as long as it is less than approximately one tenth of the cyclotron energy. This structure is reflected in an oscillatory behaviour of the equation of state and other thermodynamic properties of dense matter and hence also in profiles of the density and pressure as functions of depth in the surface layers of magnetic neutron stars. These oscillations are completely smoothed out by thermal effects at temperatures of the order of the cyclotron energy or higher.Comment: 37 pages, 17 figures included, submitted to Ap

    Correlation energy of an electron gas in strong magnetic fields at high densities

    Full text link
    The high-density electron gas in a strong magnetic field B and at zero temperature is investigated. The quantum strong-field limit is considered in which only the lowest Landau level is occupied. It is shown that the perturbation series of the ground-state energy can be represented in analogy to the Gell-Mann Brueckner expression of the ground-state energy of the field-free electron gas. The role of the expansion parameter is taken by r_B= (2/3 \pi^2) (B/m^2) (\hbar r_s /e)^3 instead of the field-free Gell-Mann Brueckner parameter r_s. The perturbation series is given exactly up to o(r_B) for the case of a small filling factor for the lowest Landau level.Comment: 10 pages, Accepted for publication in Phys.Rev.

    Consistent alpha-cluster description of the 12C (0^+_2) resonance

    Full text link
    The near-threshold 12C (0^+_2) resonance provides unique possibility for fast helium burning in stars, as predicted by Hoyle to explain the observed abundance of elements in the Universe. Properties of this resonance are calculated within the framework of the alpha-cluster model whose two-body and three-body effective potentials are tuned to describe the alpha - alpha scattering data, the energies of the 0^+_1 and 0^+_2 states, and the 0^+_1-state root-mean-square radius. The extremely small width of the 0^+_2 state, the 0_2^+ to 0_1^+ monopole transition matrix element, and transition radius are found in remarkable agreement with the experimental data. The 0^+_2-state structure is described as a system of three alpha-particles oscillating between the ground-state-like configuration and the elongated chain configuration whose probability exceeds 0.9

    Drifting subpulses and inner acceleration regions in radio pulsars

    Full text link
    The classical vacuum gap model of Ruderman & Sutherland, in which spark-associated subbeams of subpulse emission circulate around the magnetic axis due to the EB drift, provides a natural and plausible physical mechanism of the subpulse drift phenomenon. Recent progress in the analysis of drifting subpulses in pulsars has provided a strong support to this model by revealing a number of subbeams circulating around the magnetic axis in a manner compatible with theoretical predictions. However, a more detailed analysis revealed that the circulation speed in a pure vacuum gap is too high when compared with observations. Moreover, some pulsars demonstrate significant time variations of the drift rate, including a change of the apparent drift direction, which is obviously inconsistent with the EB drift scenario in a pure vacuum gap. We resolved these discrepancies by considering a partial flow of iron ions from the positively charged polar cap, coexisting with the production of outflowing electron-positron plasmas. By fitting the observationally deduced drift-rates to the theoretical values, we managed to estimate polar cap surface temperatures in a number of pulsars. The estimated surface temperatures correspond to a small charge depletion of the order of a few percent of the corotational charge density. We also argue that if the thermionic electron outflow from the surface of a negatively charged polar cap is slightly below the Goldreich-Julian density, then the resulting small charge depletion will have similar consequences as in the case of the ions outflow. We thus believe that the sparking discharge of a partially shielded acceleration potential drop occurs in all pulsars, with both positively (``pulsars'') and negatively (``anti-pulsars'') charged polar caps

    Surface structure of Quark stars with magnetic fields

    Full text link
    We investigate the impact of magnetic fields on the electron distribution in the electrosphere of quark stars. For moderately strong magnetic fields B∌1013B\sim 10^{13}G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the spectral features of quark stars. We outline the main observational characteristics of quark stars as determined by their surface emission, and briefly discuss their formation in explosive events termed Quark-Novae, which may be connected to the rr-process.Comment: 9 pages, 3 figures. Contribution to the proceedings of the IXth Workshop on High Energy Physics Phenomenology (WHEPP-9), Bhubaneswar, India, 3-14 Jan. 200

    Density Matrix Functional Calculations for Matter in Strong Magnetic Fields: I. Atomic Properties

    Get PDF
    We report on a numerical study of the density matrix functional introduced by Lieb, Solovej and Yngvason for the investigation of heavy atoms in high magnetic fields. This functional describes {\em exactly} the quantum mechanical ground state of atoms and ions in the limit when the nuclear charge ZZ and the electron number NN tend to infinity with N/ZN/Z fixed, and the magnetic field BB tends to infinity in such a way that B/Z4/3→∞B/Z^{4/3}\to\infty. We have calculated electronic density profiles and ground state energies for values of the parameters that prevail on neutron star surfaces and compared them with results obtained by other methods. For iron at B=1012B=10^{12} G the ground state energy differs by less than 2 \% from the Hartree-Fock value. We have also studied the maximal negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type theories atoms can bind excess negative charge in the density matrix model. For iron at B=1012B=10^{12} G the maximal excess charge in this model corresponds to about one electron.Comment: Revtex, 13 pages with 6 eps figures include

    Dense nuclear matter in a strong magnetic field

    Full text link
    We investigate in a relativistic Hartree theory the gross properties of cold symmetric nuclear matter and nuclear matter in beta equilibrium under the influence of strong magnetic fields. If the field strengths are above the critical values for electrons and protons, the respective phase spaces are strongly modified. This results in additional binding of the systems with distinctively softer equations of state compared to the field free cases. For magnetic field ∌1020\sim 10^{20} Gauss and beyond, the nuclear matter in beta equilibrium practically converts into a stable proton rich matter.Comment: 13 pages, Revtex, figure include

    Hydrogen Phases on the Surface of a Strongly Magnetized Neutron Star

    Get PDF
    The outermost layers of some neutron stars are likely to be dominated by hydrogen, as a result of fast gravitational settling of heavier elements. These layers directly mediate thermal radiation from the stars, and determine the characteristics of X-ray/EUV spectra. For a neutron star with surface temperature T\lo 10^6 K and magnetic field B\go 10^{12} G, various forms of hydrogen can be present in the envelope, including atom, poly-molecules, and condensed metal. We study the physical properties of different hydrogen phases on the surface of a strongly magnetized neutron star for a wide range of field strength BB and surface temperature TT. Depending on the values of BB and TT, the outer envelope can be either in a nondegenerate gaseous phase or in a degenerate metallic phase. For T\go 10^5 K and moderately strong magnetic field, B\lo 10^{13} G, the envelope is nondegenerate and the surface material gradually transforms into a degenerate Coulomb plasma as density increases. For higher field strength, B>>1013B>> 10^{13} G, there exists a first-order phase transition from the nondegenerate gaseous phase to the condensed metallic phase. The column density of saturated vapor above the metallic hydrogen decreases rapidly as the magnetic field increases or/and temperature decreases. Thus the thermal radiation can directly emerge from the degenerate metallic hydrogen surface. The characteristics of surface X-ray/EUV emission for different phases are discussed. A separate study concerning the possibility of magnetic field induced nuclear fusion of hydrogen on the neutron star surface is also presented.Comment: TeX, 35 pages including 6 postscript figures. To be published in Ap
    • 

    corecore