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Density-matrix-functional calculations for matter in strong magnetic fields:
Ground states of heavy atoms
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1Mikroelectronik Centret, Technical University of Denmark, Bygning 345 O” , DK 2800 Lyngby, Denmark

2Science Institute, University of Iceland, Dunhaga 3, IS 107 Reykjavik, Iceland
3NORDITA, Blegdamsvej 17, DK 2100 KÖbenhavn O” , Denmark

~Received 6 March 1996!

We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason
for the investigation of heavy atoms in high magnetic fields. This functional describesexactly the quantum
mechanical ground state of atoms and ions in the limit when the nuclear chargeZ and the electron number
N tend to infinity withN/Z fixed, and the magnetic fieldB tends to infinity in such a way thatB/Z4/3→`. We
have calculated electronic density profiles and ground-state energies for values of the parameters that prevail
on neutron star surfaces and compared them with results obtained by other methods. For iron atB51012 G the
ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal
negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type
theories atoms can bind excess negative charge in the density matrix model. For iron atB51012G the maximal
excess charge in this model corresponds to about one electron.@S1050-2947~96!01809-4#

PACS number~s!: 31.15.2p, 03.65.2w, 32.10.2f, 97.60.Jd

I. INTRODUCTION

The properties of matter in magnetic fields of the extreme
strength of 1012 G and higher have been the subject of nu-
merous investigations since the early 1970s, a major impetus
being the discovery of pulsars in 1968 and the resulting in-
terest in magnetized neutron stars. We refer to@1–5# for
general reviews on this subject and lists of references. The
standard Hamiltonian of atomic physics,

HN,B,Z5(
i51

N

„$@p~ i !1A~r ~ i !!#•s~ i !%22Zur ~ i !u21
…

1 (
1< i, j<N

ur ~ i !2r ~ j !u21, ~1!

is usually taken as a starting point for the study of atoms in
the atmosphere and outermost crust of neutron stars. Here
N is the number of electrons that move in the Coulomb field
of a nucleus, localized at the origin with chargeZe, and in a
homogeneous magnetic fieldB5(0,0,B) with vector poten-
tial A(r )5(1/2)(2yB,xB,0). The Hamiltonian~1! operates
on antisymmetricN-particle wave functionsC of the space
and spin variables, ands5(s1 ,s2 ,s3) is the vector of Pauli
matrices. Units are chosen such that\5e52me51,
c51/a'137; the energy unit is then four times the Rydberg
energy, i.e., 54.4 eV. Besides the atomic Hamiltonian~1! it
is, of course, important to study the Hamiltonian for mol-
ecules and matter in bulk, but the present paper is only con-
cerned with~1!, more specifically with its ground-state en-
ergy

EQ~N,B,Z!5 inf~C,C!51~C,HN,B,ZC!, ~2!

and the ground-state electron density is

rN,B,Z
Q ~r !5N (

s~ i !561/2

3E uC0~r ,r
~2!, . . . ,r ~N!;s~1!, . . . ,s~N!!u2

3d3r ~2!
•••d3r ~N!, ~3!

whereC0 is a ground-state wave function.
Previous works on matter in strong magnetic fields can

roughly be divided into two classes. On the one hand, the
focus has been on light atoms, in particular hydrogen with
Z51, on the other hand, focus has also been on heavy atoms
with high Z. The present contribution falls into the second
class. HereZ526 plays a special role because iron is be-
lieved to be the most abundant element in the surface layer
of a neutron star@1,2#. For such heavy atoms it is reasonable
to expect that important aspects can be extracted from an
asymptotic analysis inZ, and since 1012 G is large even
compared with the natural atomic unitB05m2e3c/\3

52.353109 G, an asymptotic analysis inB is equally called
for.1

The asymptotic behavior of the energy~2! and density~3!
asN,Z→`, whereN/Z is fixed and the magnetic fieldB is
allowed to vary withZ as well, has recently been rigorously
studied by Lieb, Solovej, and Yngvason@6,4,5#. In these pa-
pers it was proved that the ground-state properties of~1! can
in this limit be evaluatedexactlyby five nonlinear function-
als corresponding to different physics at different scales of
the magnetic fieldB as measured by powers ofZ. These five
parameter regions are characterized as follows: Region 1,
B!Z4/3; region 2,B;Z4/3; region 3,Z4/3!B!Z3; region 4,

1With our choice of units 2me51 and the magnetic field is actu-
ally measured in units of 4B059.403109 G.
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B;Z3; region 5,B@Z3. HereB!Zp, B@Zp, andB;Zp

mean, respectively, that the ratioB/Zp tends to 0,̀ , or a
constantÞ0 asZ→`.

The asymptotic theories corresponding to regions 1–3 are
semiclassical theories of Thomas-Fermi type that have been
extensively applied to neutron stars in the past, see, e.g.,
@7–13#. Salient features of atoms in region 5 were captured
by a different density functional theory already in the papers
@14,15#. However, the conditions on the surface of a typical
neutron star correspond rather to region 4, and this asymp-
totic region is also the most interesting one from the math-
ematical point of view. In fact, in@4# it is shown that it can
be described by a functional of a novel type, where the vari-
able is not a density, but a function with values in density
matrices. Moreover, this theory covers regions 3 and 5 as
limiting cases. We refer to it as the density-matrix~DM!
theory.

In view of the fact that the DM theory is an exact limit of
quantum mechanics it is important to know its properties in
some detail. Being an asymptotic theory it is clear that it
does not encompass the same information as the full Hamil-
tonian at finiteZ andB. In particular, the DM theory does
not capture exchange-correlation effects, and it is a theory of
very strong fields in the sense that all electrons are confined
to the lowest Landau band. These features should not be
considered as a shortcoming of the DM theory, however. In
fact, the hardest part of the derivation of the limit theorems
in @4# is precisely to prove rigorously that contributions from
exchange and higher Landau bands vanish in the limit con-
sidered. The DM theory should be judged on its own merits:
It is enormously more simple numerically than the full quan-
tum mechanical problem~2! and it is a well defined starting
point for more refined approximations.

In the present contribution we report on a numerical study
of the DM theory for atoms. We have computed ground-state
energies and electronic density profiles over a wide range of
parameters and compared them with results obtained by dif-
ferent methods. In particular, we compare the DM theory to
the semiclassical theory that applies in region 3, the simple
density functional theory for region 5, and also to other den-
sity functional@16,17# and Hartree-Fock~HF! @18# calcula-
tions. The difference between DM and HF calculations of
ground-state energies is less than 2% where data are avail-
able so that comparison can be made. This is remarkable in
view of the fact that for standard Thomas-Fermi~TF! theory
with B50 the Scott term, which corrects for the rough treat-
ment of the electrons close to the nucleus in TF theory, must
be incorporated in order to achieve such a good numerical
agreement, cf.@19#. Thus, at least at this field strength, DM
theory is closer to HF theory than might have been expected.
A more precise statement requires an analysis of the next to
leading order terms in the asymptotic expansion of the
ground-state energy. Such an analysis has yet to be carried
out.

Another point where the DM theory differs from semi-
classical theories is in the possibility of negative ionization.
It is a general feature of Thomas-Fermi type theories, based
on potential theoretical arguments, cf.@20#, that the number
of bound electrons never exceedsZ. For the quantum me-
chanical problem the meaning of this is simply that the bind-
ing energy of an excess electron must necessarily be of lower

order inZ than the ground-state energy. On the other hand, it
is known that a magnetic field enhances binding, for in-
stance, the Hamiltonian~1! with N5Z11 has infinitely
many bound states forBÞ0 @21#. In the limit of extremely
strong fields in region 5 the negative charge can even be as
large as 2Z @4#. The only rigorous results on the DM theory
concern this extreme limit, but our numerical computations
clearly show negative ionization that increases withB. It
seems, however, that in order to approach the 2Z value ex-
tremely strong fields are needed; even at fields as strong2 as
1018 G the excess charge for iron is ‘‘only’’ about 23%.

Our interest in negative ionization is also motivated by its
relation to another question, the binding of atoms into mol-
ecules and chains. Although a rigorous mathematical theo-
rem linking these two aspects of binding does not seem to
exist, it is a fact that in regions 1–3, i.e., forB!Z3, molecu-
lar binding energies are vanishingly small compared to
ground-state energies, whereas in region 5 binding becomes
extremely strong: For a diatomic molecule the binding en-
ergy is six times the ground-state energy of an individual
atom. The question whether iron is weakly or strongly bound
at field strengths of the order 1012 G has been controversial
over the past 25 years. The best HF results@18# indicate
weak or no binding, but the computations are difficult for
they amount to subtracting one large number from another. It
is decisive to treat the molecules and the individual atoms
consistently by the same numerical methods so that unavoid-
able errors cancel as far as possible. Since the DM theory is
numerically much simpler than HF theory it is easier to
achieve this in the former and we plan to return to the bind-
ing question in a separate paper. The atomic computations
presented here are a necessary preparation for the study of
molecules and chains.

II. THE DENSITY-MATRIX THEORY
AND ITS LIMITING CASES

The density-matrix theory@6,4# is based on an energy
functional that depends not simply on the electronic density,
but rather on density matrices of a certain kind. To be more
precise, the variable of the functional is a mappingG:
r'°G r'

which, for each pointr'5(x,y) in the two-
dimensional plane perpendicular to the field, defines an inte-
gral kernelG r'

(z,z8) with *G r'
(z,z)dz,`. Here z is the

one-dimensional spatial variable along the field. In a mag-
netic field of strengthB these kernels have to satisfy the
condition

0<E E G r'
~z,z8!c~z!*c~z8!dzdz8<

B

2pE uc~z!u2dz

~4!

for all one-dimensional wave functionsc and all r' . The
density in three-dimensional space corresponding to such a

2The computations at these extreme field strengths were carried
out mainly to test the mathematical properties of DM theory. It is
clear that doubts about the applicability of the nonrelativistic
Hamiltonian~1! can be raised in such extreme fields, even for very
heavy atoms.
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G is rG(r )5G r'
(z,z) for r5(r' ,z). The density-matrix

functional for an atom with nuclear chargeZ is defined by

EDM@G#52E F ]2G r'
~z,z8!

]z82
G
z85z

d3r2ZE rG~r !

ur u
d3r

1
1

2E E rG~r !rG~r 8!

ur2r 8u
d3r 8d3r . ~5!

In the density matrix theory the electrostatic interactions
are treated classically but the kinetic energy for the motion
along the magnetic field is treated quantum mechanically by
the2]2/]z2 term. In directions perpendicular to the field the
motion is restricted by the ‘‘hard core’’ condition~4!. This
condition reflects the fact that the density of states per unit
area for free electrons in the lowest Landau band is
B/(2p). The functional ~5! is plausible if one thinks of
G r'

(z,z8) as an approximation to

NE C0~r' ,z;r2 , . . . ,rN!C0* ~r' ,z8;r2 , . . . ,rN!)
j52

N

d3r j ,

~6!

whereC0 is a normalized ground-state wave function. In the
parameter regionB@Z4/3 the electrons are confined to the
lowest Landau band, and the Pauli Hamiltonian
$@p1A(r )#•s%2, restricted to the lowest Landau band, is
precisely2]2/]z2.

The ground-state energy forN electrons in DM theory is

EDM~N,B,Z!5 infH EDM@G#:E rG~r !d3r<NJ . ~7!

As shown in@4#, Theorem 4.3, there is a unique minimizer
for this variational problem, i.e.,

EDM~N,B,Z!5EDM@GN,B,Z
DM #, ~8!

with a uniqueGN,B,Z
DM The corresponding density,rN,B,Z

DM sat-
isfies *rN,B,Z

DM 5N, if N<Nc , and *rN,B,Z
DM 5Nc , if N.Nc ,

whereNc>Z is a number depending onZ and B. As ex-
plained in the next section, the minimization problem~7!
amounts to seeking at eachr' the lowest eigenvalues and
eigenfunctions for a one-dimensional Schro¨dinger Hamil-
tonian 2]2/]z1Vr'

DM(z) where Vr'
DM is the self-consistent

potential generated by the nucleus andrN,B,Z
DM .

The density matrix theory is in fact a two parameter
theory with parametersl5N/Z and h5B/Z3 due to the
scaling relations

EDM~N,B,Z!5Z3EDM~l,h,1! ~9!

and

rN,B,Z
DM ~r !5Z4rl,h,1

DM ~Zr !. ~10!

In particular, the ratio toZ of the maximal number of elec-
trons that a nucleus can bind in DM theory,lc5Nc /Z, is a
function ofh alone.

The DM theory holds a special position in the study of the
properties of matter in strong magnetic field because it pro-

vides anasymptotically exactdescription of the quantum me-
chanical ground-state energyEQ and electron densityrQ as
N, Z, and B tend to infinity with N/Z fixed and
B/Z4/3→`. The following theorems are proved in@4#, Theo-
rems 1.1 and 8.1.

Theorem II.1. Let N, Z→` with N/Z fixed. If
B/Z4/3→`, then

EQ~N,B,Z!/EDM~N,B,Z!→1. ~11!

Theorem II.2. Let N, Z, and B→` with N/Z5l and
B/Z35h fixed. Then

Z24rN,B,Z
Q ~Z21r !→rl,h,1

DM ~r ! ~12!

in the sense of convergence of distributions.
The shape of atoms in DM theory is discussed in Sec. IV

in connection with Figs. 1 and 2. It should be kept in mind
that by the limit theorems II.1 and II.2 the DM theory is a
theory ofheavyatoms. We have chosen iron withZ526 as
our reference because of its astrophysical importance. By the
scaling relations~9! and ~10! it is simple to transform the
results to other values ofZ. As seen from the figures, the
atom is approximately spherical when the magnetic field is
not too strong (&1011 G for iron!, but becomes increasingly

FIG. 1. Contour plots of the electronic density of iron atoms in
DM theory forB51011 G ~left! andB51012 G ~right!. The outer-
most contour encloses 99% of the negative charge, the next 90%,
then 80%, etc., and the two innermost 5% and 1%, respectively.

FIG. 2. Contour plots of the electron density of iron atoms in
DM theory for B51013 G ~left! andB51014 G ~right!. The con-
tours are drawn in the same way as in Fig. 1. AtB51014 the DM
model has simplified and the density is described by the SS func-
tional ~12!.
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elongated as the field goes up. In fact, as shown in@4#, the
limiting casesh→0 andh→` of the DM theory can be
described by simpler theories that we now review briefly,
referring to@4,5# for details.

The weak field limit,h→0, is the Thomas-Fermi theory
for atoms in strong magnetic fields, where only the lowest
Landau band is taken into account~as in DM theory!. This
theory was introduced by Kadomtsev@7# and studied further
in a number of publications, see@5# for a list of references. In
@4,5# it is called the STF theory. The density functional is

ESTF@r#5
4p4

3B2E r~r !3d3r2ZE r~r !

ur u
d3r

1
1

2E E r~r !r~r 8!

ur2r 8u
d3rd3r 8. ~13!

The precise connection between DM and STF theory is given
in @4#, Eq. ~8.11!; if ESTF(N,B,Z) denotes the infimum of
~13! with subsidiary condition*r<N, then

lim
h→0

EDM~l,h,1!/h2/55ESTF~l,1,1!. ~14!

In STF theory, atoms arespherical with a finite radius
;Z21/3(B/Z4/3)22/5.

In the opposite parameter regime, more precisely forh
larger than a certain critical value,hc , DM theory also re-
duces to a density functional theory. The value ofhc de-
pends onl; for l51 we findhc50.148, which forZ526
corresponds toB52.4431013 G. The energy functional ap-
propriate for suchsuperstrong~SS! fields is

ESS@r#5E @]Ar/]z#2d3r2ZE r~r !

ur u
d3r

1
1

2E E r~r !r~r 8!

ur2r 8u
d3rd3r 8, ~15!

with the subsidiary conditions

E r~r !d3r<N,

E r~r !dz<B/~2p! for all r' . ~16!

In fact, for h>hc , the minimizer of~5! has the form

G r'
DM~z,z8!5ArDM~r' ,z!ArDM~r' ,z8!, ~17!

and ~5! evaluated forGDM is the same as~15! evaluated for
rDM. Atoms in SS theory have the form of a thincylinder
with axis in the direction of the magnetic field and with a
cone-shaped region essentially cut out of its interior. The
radius is finite,R5A2Z/B. The extension along the field is
infinite, but the bulk of the electrons is confined within a
distance;Z21@ ln(B/Z3)#21 from the nucleus.

An even greater simplification occurs in the extreme limit
h→`, which we refer to as thehyperstrong~HS! case. In

this limit the atom becomes effectively one dimensional and
is described by a functional that can be minimizedin closed
form. This functional is

EHS@r#5E @]Ar/]z#2dz2r~0!1E r~z!2dz, ~18!

wherer(z) is a one-dimensionaldensity and the subsidiary
condition is

E r~z!dz<l5N/Z. ~19!

The connection between the SS and HS theories is as fol-
lows. LetESS(N,B,Z) denote the minimum of~15! with the
subsidiary conditions~16!, and letEHS(l) denote the mini-
mum of ~18! with the subsidiary condition~19!. Let L(h) be
the solution to the equation

~h/2!1/25L~h!sinh@L~h!/2#. ~20!

Then we have

ESS~N,B,Z!5Z3L~h!2EHS~l!1Z3O„L~h!…. ~21!

There is also a corresponding connection between the mini-
mizing densities,rN,B,Z

SS (r ) andrl
HS(z), for the two theories.

Namely,

@Z2L~h!#21E rN,B,Z
SS ~r' ,@ZL~h!#21z!d2r'→rl

HS~z!

~22!

~in the sense of distributions!.
The functionL(h) behaves like lnh for largeh, so the

convergence ofESS to EHS is rather slow. The main interest
in the HS theory is thatrl

HS(z) andEHS(l) can be explicitly
computed: Writingrl

HS as @cl
HS#2 one has

cl
HS~z!5

A2~22l!

4sinh@ 1
4 ~22l!uzu1c#

for l,2, ~23!

cl
HS~z!5A2~21uzu!21 for l>2, ~24!

where tanhc5(22l)/2. Moreover,3

EHS~l!52 1
4 l1 1

8 l22 1
48 l3 ~25!

for l<2 and EHS(l)5EHS(2)521/6 for l.2. Thus
lc52 in HS theory. Equation~21! is essentially the state-
ment of Theorem 3.5 in@4#, but with one refinement: By
replacing lnh in that theorem byL(h) one obtains a neater
estimate for the error term. The proof of~21! and~22!, which
follows closely the proof of Theorem 3.5 in@4#, is given in
the Appendix.

3We recall that our energy unit is 54.4 eV.
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III. NUMERICAL MINIMIZATION
OF THE DENSITY-MATRIX FUNCTIONAL

In this section we describe in some detail the numerical
methods used to study the DM theory. The task is to mini-
mize numerically the density-matrix functional~5! under the
constraints~4! andN5*rG(r )d

3r . The density matrix can be
expressed in the form

G r'
~z,z8!5(

j51

`

l j
r'f j

r'~z8!*f j
r'~z!, ~26!

wheref j
r'(z) is an orthonormal basis in the Hilbert space

L2(R,dz) of one-dimensional wave functions for eachr'
and 0<l j

r'<B/(2p), by condition ~4!. For the minimizer
GDM it turns out that

l j
r'5H B/2p if j< j c

r'

0 if j. j c
r',

~27!

with j< j c
r',`. In fact, j< j c

r'< j c with a j c,` that is in-
dependent ofr' ~but depends onB), cf. @4#, p. 553. The
functionsf j

r' satisfy the one-dimensional Schro¨dinger equa-
tion

F2
]2

]z2
2

Z

ur u
1E rG~r 8!

ur2r 8u
d3r 8Gf j

r'~z!5e j
r'f j

r'~z! ~28!

and for each (N,Z,B) there exists a uniquemDM such that
j< j c

r' if and only if e j
r'<mDM, and~26! is the solution of the

minimization problem. Our strategy is to minimize the den-
sity matrix functional~5! by iteratively solving the set of
nonlinear eigenvalue equations~28! and determiningmDM

such that the constraint*rG5N is satisfied. The eigenvalue
equations are invariant with respect to rotation around thez
axis. Hence they depend only onur'u, but even with this
reduction~28! yields an infinite number of eigenvalue equa-
tions, one for each value ofur'u. We reduce them to a finite
number by making theur'u axis discrete. The DM atom has
a finite radiusR<R05A2N/B. We therefore only have to
consider the eigenvalue equations for whichur'u<R. Let
N' be the number of eigenvalue equations we choose to
work with. Let

D'5
R0

N'21
. ~29!

We solve~28! at theN' pointsnD' , n51, . . . ,N' , on the
ur'u axis. Let

un
'~r !5H 1 if rP„~n21!D' ,nD'‡

0 otherwise.
~30!

We minimize the density-matrix functional~5! with density
matrices of the form

G r'
~z8,z!5(

j51

`

(
n51

N'

l j
nD'f j

nD'~z8!*f j
nD'~z!un

'~ ur'u!.

~31!

Let

hn52
]2

]z2
2

Z

A~nD'!21z2
, ~32!

and letĉ i
n denote the eigenfunctions ofhn and m̂ i

n the cor-
responding eigenvalues, so thathnĉ i

n5m̂ i
nĉ i

n . We express
f j
nD'(z) in terms of approximate eigenfunctions ofhn which

correspond to theNb lowest eigenvalues. Hence we write

f j
nD'~z!5(

i51

Nb

cji
nc i

n~z!, ~33!

where c i
n is an approximation forĉ i

n . We determine ap-
proximations for the basis functionsĉ i

n and their eigenvalues
m̂ i
n by the method of finite elements~FEM! for eigenvalue

problems, dividing the interval@2zm ,zm#, zm.0 into
elements4 and choosing a polynomial basis of degree 5
within each, cf.@22#. Let these solutions bec i

n(z) where we
induce the boundary condition thatc i

n(6zm)50. The eigen-
value corresponding toc i

n(z) is denoted bym i
n . Let Ni be

the number of samples ofc i
n(z) values we choose to work

with along thez axis and define

D i5
2zm
Ni21

. ~34!

Then the samples we work with arec i
n
„( l21/2)D i2zm…,

l51, . . . ,Ni . We use the valuesm i
n as approximations for

m̂ i
n . This basis is chosen because it is expected to be close to

the solutionsf j
nD'(z) and as such is a natural starting point

for the self-consistent iterations. We have now defined the
set over which we numerically minimize~5!.

We solve the set of nonlinear equations~28! in a self-
consistent manner iteratively. We define the chain of poten-
tials

V1
~k!~r !5~12a!V1

~k21!~r !1aV0
~k21!~r ! ~35!

for k.0 and V1
(0)50, aP(0,1#.5 Let f j

nD' ,(k)(z) be the
eigenfunctions of the operator

HnD' ,~k!5hn1V1
~k!~r !, ~36!

with

V0
~k!~r !5E Gx

'8
~k!

~z8,z8!

ur2r 8u
d3r 8, ~37!

where

4The number of elements we use are 50–60, and their width varies
such that the smallest elements are closest to the origin.
5Self-consistent iterations of the kind discussed here are in general

not convergent. The coefficient (12a) acts as a damping factor on
the iterations. The value ofa is in practice chosen by trial and error
as high as possible without inducing instability. That way the itera-
tions converge as fast as is possible.

1940 54KRISTINN JOHNSEN AND JAKOB YNGVASON



G r'
~k!~z,z8!5(

j51

Nb

(
n51

N'

l j
nD' ,~k!f j

nD' ,~k!
~z8!*

3f j
nD' ,~k!

~z!un
'~ ur'u!. ~38!

Note thatf j
nD' ,(0)(z)5c j

n(z). With an appropriate choice of

a ~we useaP@0.01,0.1#) the sequencef j
nD' ,(k)(z) turns out

to be convergent and

lim
k→`

f j
nD' ,~k!

~z!5f j
nD'~z! ~39!

in L2(@2zm ,zm#,dz). This defines our self-consistent itera-
tion scheme. To be consistent with the discrete form of~38!
we work with the potentialsV1

(k) andV0
(k) of the form

V~z,r'!5(
l51

Ni

(
n51

N'

Vlnu l
i~z!un

'~r'!, ~40!

where

u l
i~z!5H 1 if zP„~ l21!D i2zm ,lD i2zm‡

0 otherwise.
~41!

To determine~37! we calculate the boundary values on the
N'3Ni grid we work on by direct integration,

E Gx
'8

~k!
~z8,z8!

ur2r 8u
d3r 85

2

Ar
E
0

`

dr8Ar 8Gx
'8

~k!
~z8,z8!

3Q21/2S r 21r 82

2rr 8 D , ~42!

whereQn21/2 is an associated Legendre function. The direct
integration of~37! is very slow but it is, on the other hand,
very accurate. To determineV0

(k) at interior grid points faster
numerically we do the following: We note that~37! is the
solution of the Poisson equation

¹2V0
~k!5G r'

~k! . ~43!

With the boundary values determined by the direct integra-
tion we use standard five point difference approximation to

the Laplacian in order to determineV0
(k) at the interior points.

We solve the finite difference scheme by simultaneous over-
relaxation. We find that an over-relaxation coefficient of
1.8 yields fast convergence for this problem for our choice of
N' andNi . When we use the finite difference scheme we
predetermineV0

(k) at a few interior grid points by direct in-
tegration. We then perform the over-relaxation iterations un-
til we obtain agreement with the predetermined values up to
a desired accuracy. We choose to iterate until the first five
digits of the solution are identical to all the predetermined
values.

Now we are ready to go through one iteration of the self-
consistent iteration scheme in detail. Let us consider the
kth step in the iteration. At the start of this step we know
G r'
(k21) ~recall that f j

nD' ,(0)
5c j

n). First we determine

V0
(k21) and thenV1

(k) according to the scheme described
above. We next determine the matrix elements

Hlm
nD' ,~k!

5E c l
nHnD' ,~k!cm

n dz

5d lmẽ l
n1E c l

nV1
~k!~r !cm

n dz ~44!

for eachn51, . . . ,N' . Now the eigenvectors of the matri-
cesHlm

nD' ,(k) correspond to the coefficientscji
n,(k) in

f j
nD' ,~k!

~z!5(
i51

Nb

cji
n,~k!c i

n~z!, ~45!

and we denote their corresponding eigenvalues bye j
nD' ,(k).

That is,

HnD' ,~k!f j
nD' ,~k!

~z!5e j
nD' ,~k!f j

nD' ,~k!
~z!. ~46!

To determine the eigenvectors and eigenvalues of the matri-
cesHlm

nD' ,(k) we use the eigenroutines from@23#. Finally, at
the end of the iteration step we determinemDM,(k) such that
*G r'

(k)(z,z)d3r5N. We are then ready for the next step of the

iteration.
We continue the iterations untilEDM(G (k)) ‘‘stops’’

changing. More precisely we choose to stop when the change
in EDM(G (k)) between iterations is in the seventh digit.

We calculate with N'5101, Ni5201–301, and
Nb530–60. We chosezm in such a way that 2zm is at least
three times longer than the length of the atom the calculation

TABLE II. The ratiolc5Nc /Z of the maximal negative charge
to nuclear charge as a function ofB ~in G! for iron (Z526).

B lc B lc

1010 1.020 1015 1.110
1011 1.026 1016 1.153
1012 1.035 1017 1.184
1013 1.043 1018 1.232
1014 1.061
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yields. We obtained this criterion by increasingzm until the
ground-state energy we obtained became stable in the first
six digits.

To calculate the energyEDM we note that

E8:5(
j
E l j

r'e j
r'd2r'5(

j51

Nb

(
n51

N'

2pnD'
2l j

nD'e j
nD'

5KDM2ADM12RDM. ~47!

HereKDM, ADM, andRDM are, respectively, the kinetic, at-
tractive, and repulsive parts ofEDM. With our choice of basis
c i
n andV(r ) as the attractive potential we have

E9:5E F2
]2G r'

~z,z8!

]z82
1V~r !G r'

~z,z!G
z85z

d3r

5(
j51

Nb E l j
r'f j

r'~z!F2
]2

]z2
1V~r !Gf j

r'~z!d3r

5(
j51

Nb

(
l51

Nb

(
k51

Nb

(
n51

Nr' E l j
nD'cjl

n cjk
n un

'~ ur'u!

3c l
n~z!hnck

n~z!d3r

5(
j51

Nb

(
l51

Nb

(
k51

Nb

(
n51

Nr'

2pnD'
2l j

nD'cjl
n cjk

n d lkm l
n

5(
j51

Nb

(
l51

Nb

(
n51

N'

2pnD'
2l j

nD'~cjl
n !2m l

n5KDM2ADM.

~48!

Since

ADM52E V~r !G r'
~z,z!d3r ~49!

we obtain

EDM5
1

2
~E81E9!, ~50!

KDM5E91ADM, ~51!

RDM5
1

2
~E82E9!. ~52!

This is how we evaluate the ground-state energy and the
terms it is composed of. Regarding the accuracy in the evalu-
ation ofKDM, one should be aware of the fact thatADM is in

general a lot larger thanKDM. In the case of the STF theory
ASTF515KSTF, which is the low magnetic field strength limit
for the DM theory. Therefore a slight relative error inADM

yields a much larger relative error inKDM. Based on the
information given above, we estimate the numerical error of
the scheme to be about61 in the fourth digit of the ground-
state energy. We therefore show the first four digits when we
present our results of the energy.

The estimate oflc is done in the following way.
EDM(l,h) is calculated as a function ofl which is a strictly
convex function in our approximation, due to the finite box.
The minimum of this function then determineslc . However,
the function is extremely flat around the minimum so it is
difficult to determine its position. We make a linear approxi-
mation ofEDM(l,h) using two close lying points below the
minimum. The value thus obtained gives a lower bound on
lc close to the true value.

IV. ATOMIC PROPERTIES IN DM THEORY

The results of our numerical computations are presented
in Tables I–VI and illustrated in Figs. 1–5. As remarked
before, iron is of special importance in astrophysical context,
and for this reason we state our results for the reference
valueZ526. The scaling relations~9! and~10! allow an easy
transformation to other values. Moreover,in this section
magnetic fields are measured in gauss and energies in keVto
facilitate comparison with astrophysical data and other com-
putations. To transform into the units in which the original
Hamiltonian ~1! is written it should be kept in mind that
there the energy unit is 54.4 eV and the unit for magnetic-
field strength is 9.403109 G. The dimensionless parameter
h5B/Z3 has for Z526 and B51012 G the value
6.05331023. This may seem small for region 4, but as dis-
cussed in@5#, the relevant semiclassical parameter is really

TABLE III. The binding energy at maximal negative ionization in DM theory.

B @EDM(lc)2EDM(1)#/EDM(1) B @EDM(lc)2EDM(1)#/EDM(1)

1010 0.0011 1015 0.0073
1011 0.0008 1016 0.0123
1012 0.0035 1017 0.0232
1013 0.0038 1018 0.0203
1014 0.0050

TABLE IV. Comparison of the ground-state energy~in keV! of
iron atoms in DM theory, STF theory, and HS theory at various
field strengthsB ~in G!. See also Fig. 3.

B EDM ESTF EHS

1011 221.47 221.57
1012 254.37 254.07
1013 2137.8 2135.8
1014 2342.7 2341.2
1015 2786.3 2857.0 20.3346
1016 21623 22153 2535.3
1017 23065 25405 21797
1018 25264 213583 23913
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h1/5 and at the quoted values ofZ and B we have
h1/550.36.

Figures 1 and 2 show contour plots of the electronic den-
sities of iron atoms withN5Z according to DM theory at
four different field strengths, ranging from 1011 to 1014 G. It
is evident that in the weakest field the bulk of the electrons is
spherically distributed around the nucleus. With increasing
field strength the sphericity gets more and more distorted.
The atom is composed of cylindrical shells that decrease in
number as the field goes up. Between 1013 and 1014 G a
transition to a cylindrical shape with a single shell takes
place. The number of shells corresponds to the number of
eigenfunctions of the one-dimensional Schro¨dinger operators
2]2/]z21Vr'

DM(z) that contribute to the density matrix in

the sum~26!. The critical valuehc at which this number has
dropped to one was determined numerically forl51 to be
hc50.148. This corresponds toB52.4431013 G for
Z526.

In Table I the ground-state energy~7! of iron is shown as
a function of the field strength forB between 1010 and 1014G
and for various values of the ratiol5N/Z of electron num-
ber to nuclear charge. A comparison of some of these values
with results obtained by other methods is given in the next
section.

Table II shows the results forlc as a function ofB in DM
theory. At the extremely strong field of 1018 G, correspond-
ing to h1/555.7, one findslc51.232, which is still quite far
from the HS valuelc52. However, compared with Thomas-
Fermi theories, wherelc is always 1@20#, the negative ion-
ization is noticeable even for the weaker fields. The value
lc51.046 for iron atB51013 G corresponds to an excess
negative charge of 1.2 electrons. The binding energy of the
excess charge in DM theory is shown in Table III.

As remarked at the end of Sec. III a precise determination

of lc is difficult and the values quoted should be regarded as
lower bounds at the respective field strengths.

V. COMPARISON WITH OTHER THEORIES

As discussed in Sec. II, DM theory simplifies in the two
limits, h→0 andh→`, which are, respectively, described
by the STF and HS theories. In order to study the rate of this
convergence we have compared the ground-state energies at
l51 in these three models in Table IV and plotted them in
Fig. 3. It is remarkable how closely the STF ground-state
energy approximates the DM energy even at fields as strong
as 1015 G, while the electronic densities in DM theory devi-
ate appreciably from the spherical shape of STF theory al-
ready at 1012 G as seen in Fig. 1. Thus in this case at least,
the energy calculations are much less sensitive to the details
of the model than density calculations. There is, however,
another way of comparing the densities in STF and DM
theories. In Fig. 4 we have plotted together the STF density
and thespherically averagedDM density, and one sees that
they are quite close for the bulk of the electrons, up to fields
of the order 1012 G. ~The fine structure in the DM curve is
partly a numerical artifact.!

It is apparent from Fig. 3 that the DM energy values ap-
proach the HS values as the field goes up, but the conver-
gence is very slow and the asymptotic regime has not yet
been reached at the strongest fields considered for the DM
computations. On the other hand, it is interesting how well
the HS density~23! fits the DM density integrated over the
cross section of the atom as shown in Fig. 5.

Finally, in Tables V and VI we compare the ground-state
energyE computed in the DM and STF theories with values
obtained by some other methods in the literature. The com-
parison is made for iron at 1012 G, since this case has been

TABLE V. Ground-state energy~in keV! of iron atoms atB51012 G according to DM theory, HF theory
@17#, DF computations, denoted DFa @15# and DFb @16#, RV computations@23#, TFD theory@12#, and STF
theory @8#.

DM HF DFa DFb RV TFD STF
E 254.38 255.10 256.10 258.3 253.13 256.21 254.07

FIG. 3. The ground-state energy of iron atoms as a function of
the magnetic field strengthB in DM theory ~crosses!, STF theory
~short dashes!, and HS theory~long dashes!.

FIG. 4. Comparison of the electron density in STF theory
~dashed curve! and the spherically averaged density in DM theory
~solid curve! for B51011 G ~right! andB51012 G ~left!.
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considered in a number of sources. In Table V the value for
DM theory is compared with Hartree-Fock@18#, density
functional,@16,17# restricted variational~RV! @24#, Thomas-
Fermi-Dirac~TFD! @13#, and STF calculations@9#. In Table
V the splitting of the ground-state energy into its various
parts ~kinetic, attractive, repulsive, exchange! is compared
for DM, STF, and HF calculations.

VI. CONCLUSIONS

We have carried out a numerical study of the density ma-
trix model that describes exactly the quantum mechanical
ground state of atoms in a homogeneous magnetic field in
the asymptotic limit when the nuclear chargeZ, the electron
numberN, and the magnetic fieldB tend to` with N/Z
fixed andB/Z4/3→`. The calculations demonstrate the fol-
lowing features of heavy atoms in high magnetic fields as the
field strength increases: A transition from an approximately
spherical shape to a highly elongated shape, accompanied by
a decrease in ground-state energy and increasing ability to
bind excess electrons. We have also compared the DM
model with the semiclassical Thomas-Fermi theory and the

one-dimensional density functional theory that describe, re-
spectively, its low and high field limits. When (B/Z3)1/5 is of
order unity these simpler theories are numerically and con-
ceptually wrong and the full DM theory should be used. The
quantitative agreement of DM theory with Hartree-Fock cal-
culations is quite good in strong fields; for iron atB51012 G
the difference in binding energies is less than 2%. The DM
theory, however, is much simpler computationally than HF
theory for large atoms and appears suitable as a starting point
for more refined approximations and for the study of molecu-
lar binding in strong fields.
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APPENDIX

We give here a proof of Eqs.~21! and ~22!. It consists
essentially of an improvement of the estimates in Proposition
3.3 in @4#.

With L(h) defined by~20! we define for any densityr a
rescaled densityrh by

r~r' ,z!5Z4hL~h!rh„Zh1/2r' ,ZL~h!z…. ~A1!

We can then write the SS functional~15! as

ESS@r#5Z3L~h!2Eh
SS@rh#, ~A2!

whereEh
SS is defined by

Eh
SS@rh#5E S ]Arh

]z D 2d3r2E rh~r !Vh~r !d3r

1
1

2E E rh~r !Vh~r2r 8!rh~r 8!d3rd3r 8,

~A3!

with the rescaled Coulomb potential

Vh~r !5L~h!21@z21h21L~h!2r'
2 #21/2. ~A4!

The functionalEh
SS has a ground-state energy

Eh
SS~l!5 infH Eh

SS@rh#:rhPCSS, E rh<l,

E rh~r' ,z!dz<1J ~A5!

and a corresponding minimizing density denoted byrh
SS It is

related torSS by the scaling~A1!. The energyEh
SS is related

to ESS by the scaling~A2!,

ESS~N,Z,B!5Z3L~h!2Eh
SS~l!. ~A6!

The improvement of Proposition 3.3 in@4# is stated in the
following lemma.

TABLE VI. The composition of the ground-state energyE ~in
keV! of iron atoms atB51012G in STF theory, HF theory, and DM
theory.K is the kinetic energy,A the attractive potential energy due
to the nucleus,R the energy of Coulomb repulsion, andEex the
exchange energy.

E K A R Eex

STF 254.07 10.81 297.33 32.44 0
HF 255.10 10.6 295.4 32.7 23.06
DM 254.38 10.43 296.90 32.09 0

FIG. 5. Comparison of the electron density in HS theory~dashed
curve! and the integral overr' of the density in DM theory~solid
curve! for B51013 G ~a! andB51018 G ~b!.
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Lemma A.1. For any choice ofl and T there is a constant
C(l,T) such that

U E r~r',0!d2r'2E VhrU<C~l,T!L~h!21 ~A7!

holds, provided r>0 satisfies *r<l, r(r' ,z)50 for
ur'u.A2, and

T@r#5E S ]Ar~r' ,z!

]z D 2d3r<T.

We can choose C(l,T)5l18A2l1/4T3/418ApT1/2

3 ln(A21A6).
Proof : Following the proof of Proposition 3.3@4# we

write the difference on the left side of~A7! asA11A21A3
with

A152E
ur'u>1

Vh~r !r~r !d3r , ~A8!

A25E
ur'u<1

Vh~r !@r~r',0!2r~r !#d3r , ~A9!

and

A35E F12E
ur'u<1

Vh~r !dzGr~r',0!d2r' . ~A10!

With the same arguments as in@4# we obtain

uA1u<
l

L~h!
, ~A11!

uA2u<
8A2
L~h!

l1/4T3/4, ~A12!

and6

uA3u5U E F 2

L~h!
sinh21$h1/2/@L~h!ur'u#%21Gr~r',0!d2r'U

<2T1/2A2pH E
0

A2F 2

L~h!

3sinh21$h1/2/@L~h!r #%21G2rdr J 1/2. ~A13!

Now we deviate from@4#. Estimating the integral in~A13!
we obtain

uA3u<2A2pT1/221/4 sup
0<r<A2

UF 2

L~h!

3sinh21$h1/2/@L~h!r #%21G r 1/2U
<8ApT1/2ln~A21A6!/L~h!. ~A14!

The last inequality comes from the following. If
a5Ah/L(h), then

2sinh21~a/A2!2L~h!50 ~A15!

by the definition~20! of L(h). Using ~A15! we get

sup
0<r<A2

u@2sinh21~a/r !2L~h!#r 1/2u

5 sup
0<r<A2

u@2sinh21~a/r !22sinh21~a/A2!

12sinh21~a/A2!2L~h!#r 1/2u

5 sup
0<r<A2

u@2sinh21~a/r !22sinh21~a/A2!#r 1/2u

52 sup
0<r<A2

UF ln~A2/r !1 lnS a1Aa21r 2

a1Aa212
D G r 1/2U

<2 sup
0<r<A2

u ln~A2/r !r 1/2u

12 sup
0<r<A2

U lnS a1Aa21r 2

a1Aa212
D r 1/2U

<25/4ln2125/4ln@~11A3!/A2#525/4ln~A21A6!.

~A16!

This concludes the proof.
In analogy with Proposition 3.4 in@4# the following

lemma is a corollary of Lemma A.1.
Lemma A.2. For r as in Lemma A.1 there is a constant

C8(l,T) such that

U E E r~r !Vh~r2r 8!r~r 8!d3rd3r 82E r̄~z!2dzU
<C8~l,T!L~h!21, ~A17!

wherer̄(z)5*r(r' ,z)d2r' .
The proof of~21! and~22! is now identical to the proof of

Theorem 3.4 in@4# with Lemmas A.1 and A.2 in place of
Propositions 3.3 and 3.4.

In order to illustrate the difference between the function
L(h) and the approximationL(h)' lnh used in@4#, the ratio
L(h)/ lnh is plotted in Fig. 6.

6In @4#, p. 541 there is a power of 1/2 missing onT in the estimate
for A3.

FIG. 6. The ratioL(h)/ lnh.
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