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Density-matrix-functional calculations for matter in strong magnetic fields:
Ground states of heavy atoms

Kristinn Johnseh?3 and Jakob Yngvasdr?
IMikroelectronik Centret, Technical University of Denmark, Bygning 34B& 2800 Lyngby, Denmark
2Science Institute, University of Iceland, Dunhaga 3, IS 107 Reykjavik, Iceland
SNORDITA, Blegdamsvej 17, DK 210@Benhavn/Q Denmark
(Received 6 March 1996

We report on a numerical study of the density matrix functional introduced by Lieb, Solovej, and Yngvason
for the investigation of heavy atoms in high magnetic fields. This functional descritmslythe quantum
mechanical ground state of atoms and ions in the limit when the nuclear chaagd the electron number
N tend to infinity withN/Z fixed, and the magnetic fieB tends to infinity in such a way th&/Z*°—. We
have calculated electronic density profiles and ground-state energies for values of the parameters that prevail
on neutron star surfaces and compared them with results obtained by other methods. FdB ird0'&tG the
ground-state energy differs by less than 2% from the Hartree-Fock value. We have also studied the maximal
negative ionization of heavy atoms in this model at various field strengths. In contrast to Thomas-Fermi type
theories atoms can bind excess negative charge in the density matrix model. FolBrea@f G the maximal
excess charge in this model corresponds to about one elef&bd50-29476)01809-4

PACS numbg(s): 31.15~p, 03.65-w, 32.10—f, 97.60.Jd

I. INTRODUCTION
PRez(N=N 2
The properties of matter in magnetic fields of the extreme sh==12
strength of 1& G and higher have been the subject of nu-
merous investigations since the early 1970s, a major impetus XJ [Wo(r,r®, .. rNsh o sN)[2
being the discovery of pulsars in 1968 and the resulting in-
terest in magnetized neutron stars. We refef te5] for xd3r@. .. g3 (3

general reviews on this subject and lists of references. The

standard Hamiltonian of atomic physics, . )
where WV is a ground-state wave function.

N Previous works on matter in strong magnetic fields can
_ (M (V7. N2 7|, ()]~ 1 roughly be divided into two classes. On the one hand, the
Hnez ;1 ([P +A(r")]- a2 =Z[r V7 focus has been on light atoms, in particular hydrogen with
Z=1, on the other hand, focus has also been on heavy atoms
I |r()—p ()] -1 1) with high Z. The present contribution falls into the second
1<i<j=<N ' class. HereZ=26 plays a special role because iron is be-

lieved to be the most abundant element in the surface layer

is usually taken as a starting point for the study of atoms ifPf @ neutron staf1,2]. For such heavy atoms it is reasonable
the atmosphere and outermost crust of neutron stars. Hel@ expect that |Impor§ant aspects canb?be gxtracted from an
N is the number of electrons that move in the Coulomb field@SyMPtotic analysis irZ, and since 1& G |s_larzge3 eV?“

of a nucleus, localized at the origin with charge, and ina  compared with the natural atomic unB,=me’c/%
homogeneous magnetic fieB= (0,0,B) with vector poten- ;r2i35>< 10° G, an asymptotic analysis & is equally called
tial A(r)=(1/2)(—yB,xB,0). The Hamiltonian(1) operates : . . .

on antisymmetrid\-particle wave functionaV of the space th asymprt]otlc Ig/ezhgwgr 0(; the der;]erga) and qlerf1_5|$)

and spin variables, anat= (o ,0,,03) is the vector of Pauli asi,Zz—oo, where IS Tixed and the magnetic field is
matrices. Units are chosen such that=e=2m,=1, allowed to vary withz as well, has recently been rigorously
c=1/a~137; the energy unit is then four times the Rydbergsmd'(.ad by Lieb, Solovej, and Yngvasf#i4.5. In t.hese pa-
energy, i.e., 54.4 eV. Besides the atomic Hamiltonjanit pers it was proved that the ground-_state prppeme(&)o@n

is. of c'ours’e important to study the Hamiltonian for mol- in this limit be evaluatedxactlyby five nonlinear function-
eéules and n;atter in bulk, but the present paper is only corf"-‘ls corresponding to different physics at different scales of

cerned with(1), more specifically with its ground-state en- the magnetic ﬁ.el(B as measured py powers 2if These fiye
parameter regions are characterized as follows: Region 1,

er ) : .
9y B<Z*? region 2,B~Z*?; region 3,2*°<B<Z?; region 4,
EQ(N,B,Z)=infy y)-1(¥,Hy g V), 2
with our choice of units th,=1 and the magnetic field is actu-
and the ground-state electron density is ally measured in units of B,=9.40x 10° G.

1050-2947/96/5¢)/193611)/$10.00 54 1936 © 1996 The American Physical Society
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B~Z3; region 5,B>Z3. Here B<ZP, B>ZP, andB~ZP  orderinZ than the ground-state energy. On the other hand, it
mean, respectively, that the rati®yZP tends to 0,2, or a is known that a magnetic field enhances binding, for in-
constant#0 asZ— . stance, the Hamiltoniarl) with N=Z+1 has infinitely
The asymptotic theories corresponding to regions 1—3 argany bound states fd+ 0 [21]. In the limit of extremely
semiclassical theories of Thomas-Fermi type that have bee$frong fields in region 5 the negative charge can even be as
extensively applied to neutron stars in the past, see, e.garge as Z [4]. The only rigorous results on the DM theory
[7-13. Salient features of atoms in region 5 were capturectoncern this extreme limit, but our numerical computations
by a different density functional theory already in the paperlearly show negative ionization that increases wih It
[14,15. However, the conditions on the surface of a typicalS€€mS, however, that in order to approach tdevalue ex-
neutron star correspond rather to region 4, and this asymﬂ[ergely strong fields are needed; even at fields as strang
totic region is also the most interesting one from the mathA0'® G the excess charge for iron is “only” about 23%.
ematical point of view. In fact, ifi4] it is shown that it can Our interest in negative ionization is also motivated by its
be described by a functional of a novel type, where the vari€lation to another question, the binding of atoms into mol-
able is not a density, but a function with values in densityecules and chains. Although a rigorous mathematical theo-
matrices Moreover, this theory covers regions 3 and 5 as'®M linking these two aspects of binding doeas not seem to
limiting cases. We refer to it as the density-matt@M)  ©Xist, itis a fact that in regions 1-3, i.e., fBr<Z*, molecu-
theory. lar binding energies are vanishingly small compared to
In view of the fact that the DM theory is an exact limit of ground-state energies, whereas in region 5 binding becomes
quantum mechanics it is important to know its properties in€Xtremely strong: For a diatomic molecule the binding en-
some detail. Being an asymptotic theory it is clear that it€f9Y IS Six times the ground-state energy of an individual
does not encompass the same information as the full Hamiftom. The question whether iron is weakly or strongly bound
tonian at finiteZ and B. In particular, the DM theory does at field strengths of the order YOG has been controversial
not capture exchange-correlation effects, and it is a theory d?ver the past 25 years. The best HF res{iti§] indicate
very strong fields in the sense that all electrons are confiney€@k or no binding, but the computations are difficult for
to the lowest Landau band. These features should not K&€Y amount to subtracting one large number from another. It
considered as a shortcoming of the DM theory, however. IS decisive to treat the molecules and the individual atoms
fact, the hardest part of the derivation of the limit theoremsconsistently by the same numerical methods so that unavoid-
in [4] is precisely to prove rigorously that contributions from @ble errors cancel as far as possible. Since the DM theory is
exchange and higher Landau bands vanish in the limit confumerically much simpler than HF theory it is easier to
sidered. The DM theory should be judged on its own merits@chieve this in the former and we plan to return to the bind-
It is enormously more simple numerically than the full quan-iNg question in a separate paper. The atomic computations
tum mechanical problert®) and it is a well defined starting presented here are a necessary preparation for the study of

point for more refined approximations. molecules and chains.

In the present contribution we report on a numerical study
of the DM theory for atoms. We have computed ground-state Il. THE DENSITY-MATRIX THEORY
energies and electronic density profiles over a wide range of AND ITS LIMITING CASES

parameters and compared them with results obtained by dif-

ferent methods. In particular, we compare the DM theory to

the semiclassical theory that applies in region 3, the simpl

density functional theory for region 5, and also to other den , X ) X .

sity functional[16,17] and Hartree-FockHF) [18] calcula- precise, the. variable of the _functlonal IS a mappihig

tions. The difference between DM and HF calculations ofriHFu which, for each pointr, =(x,y) in the two-

ground_state energies is less than 2% where data are a\/aqi.rnenSional plane perpendicular to the f|e|d, defines an inte-

able so that comparison can be made. This is remarkable @al kerell'; (z,z") with [I'; (z,z)dz<c. Herez is the

view of the fact that for standard Thomas-FelffiF) theory = one-dimensional spatial variable along the field. In a mag-

with B=0 the Scott term, which corrects for the rough treat-netic field of strengthB these kernels have to satisfy the

ment of the electrons close to the nucleus in TF theory, mustondition

be incorporated in order to achieve such a good numerical

agreement, cf{19]. Thus, at least at this field strength, DM , , B

thgeory is closer to HF theory than might have beengexpected. OSJ J It (22)(2)" y(z')dzdZ < ﬁj |¥(2)|dz

A more precise statement requires an analysis of the next to (4

leading order terms in the asymptotic expansion of the

ground-state energy. Such an analysis has yet to be carrid¢dr all one-dimensional wave functiong and allr, . The

out. density in three-dimensional space corresponding to such a
Another point where the DM theory differs from semi-

classical theories is in the possibility of negative ionization.

It is a general feature of Thomas-Fermi type theories, based?The computations at these extreme field strengths were carried

on potential theoretical arguments, [20], that the number out mainly to test the mathematical properties of DM theory. It is

of bound electrons never exceeds For the quantum me- clear that doubts about the applicability of the nonrelativistic

chanical problem the meaning of this is simply that the bind-Hamiltonian(1) can be raised in such extreme fields, even for very

ing energy of an excess electron must necessarily be of loweteavy atoms.

The density-matrix theory6,4] is based on an energy
unctional that depends not simply on the electronic density,
but rather on density matrices of a certain kind. To be more
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I' is pr(r)=1’u(z,z) for r=(r,,z). The density-matrix 201
functionalfor an atom with nuclear chargé is defined by 1.5+
T, (2,2) (1) 1.0}
DM 1— _ L 3,_ - | Pr\Y) .3

ENI] f T Z,,Zd r ZJ |r| d°r ~ 05t
(Opr() 2 00
ffpr P 3 ddr. (5) ~ —05¢
-1.0¢
In the density matrix theory the electrostatic interactions 15

are treated classically but the kinetic energy for the motion _2’0

along the magnetic field is treated quantum mechanically by

the — 9%/3z? term. In directions perpendicular to the field the _ o _

motion is restricted by the “hard core” conditio@). This FIG. 1. Contour plots of the electronic density of iron atoms in
1 2 H

condition reflects the fact that the density of states per uniP™ theory forB= 10 G (left) andB=10"* G (right). The outer-

area for free electrons in the lowest Landau band Ignost contour encloses 99% of the negative charge, the next 90%,
B/(2). The functional(5) is plausible if one thinks of then 80%, etc., and the two innermost 5% and 1%, respectively.

; T
Fu(z,z ) as an approximation to vides anasymptotically exaalescription of the quantum me-

chanical ground-state ener@? and electron density® as

. * . 3, N, Z, and B tend to infinity with N/Z fixed and

NJ Polrr zifz, .. I Wo (1 250 ’rN)sz ar;. B/Z*3— . The following theorems are proved [i4], Theo-
(6) rems 1.1 and 8.1.

Theorem 11.1. Let N, Zo with N/Z fixed. If
whereW is a normalized ground-state wave function. In theg;z43_, » then

parameter regioB>Z*3 the electrons are confined to the

lowest Landau band, and the Pauli Hamiltonian EQ(N,B,Z)/EPM(N,B,Z)—1. (12)

{[p+A(r)]- o}?, restricted to the lowest Landau band, is

precisely— 9%/ 9z°. Theorem 11.2. Let N, Z, and B with N/Z=\ and
The ground-state energy fot electrons in DM theory is B/Z3= 7 fixed. Then

Z 4R 8. AZ7 ) =M A1) (12)

in the sense of convergence of distributions.
As shown in[4], Theorem 4.3, there is a unique minimizer ~ The shape of atoms in DM theory is discussed in Sec. IV

EDM(N,B,Z)=inf[€DM[F]:fpr(r)d3r$N}. (7)

for this variational problem, i.e., in connection with Figs. 1 and 2. It should be kept in mind
that by the limit theorems I.1 and 11.2 the DM theory is a
EPM(N,B,Z)=&"M[T'R'E , (8)  theory ofheavyatoms. We have chosen iron with= 26 as

our reference because of its astrophysical importance. By the
with a uniqu Fﬁ'\’éz The correspondmg densﬂyN B,z Sat-  scaling relationg9) and (10) it is simple to transform the
isfies pr Bz=N, if NsN, andfpN Bz=Nc, if N>N;,  results to other values d. As seen from the figures, the
where N.=Z is a number depending aa and B. As ex-  atom is approximately spherical when the magnetic field is
plained in the next section, the minimization problg®  not too strong £ 10" G for iron), but becomes increasingly
amounts to seeking at each the lowest eigenvalues and
eigenfunctions for a one-dimensional Sdfirger Hamil- 0.500

tonian —az/az+ViM(z) where VEM is the self-consistent 0.375
potential generated by the nucleus aig , . 0.250
The density matrix theory is in fact a two parameter )
theory with parametera =N/Z and »=B/Z® due to the ~ 0.125
scaling relations = 0.000
[}
EPM(N,B,2)=Z3EPM(\, 7,1) (9) T -0.125
-0.250
and
-0.375
pag (=2 ((Zr). (10) ~0.500
In particular, the ratio t& of the maximal number of elec- FIG. 2. Contour plots of the electron density of iron atoms in
trons that a nucleus can bind in DM theol,=N./Z, isa  pmM theory for B=10" G (left) and B=10* G (right). The con-
function of » alone. tours are drawn in the same way as in Fig. 1.8 10' the DM

The DM theory holds a special position in the study of themodel has simplified and the density is described by the SS func-
properties of matter in strong magnetic field because it protional (12).
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elongated as the field goes up. In fact, as showpinthe this limit the atom becomes effectively one dimensional and
limiting casesn—0 and »—« of the DM theory can be is described by a functional that can be minimizealosed
described by simpler theories that we now review briefly,form. This functional is
referring to[4,5] for details.

The weak field limit,7— 0, is the Thomas-Fermi theory H ) )
for atoms in strong magnetic fields, where only the lowest € S[P]:J- [Vl 9z)*dz— P(O)“LJ p(2)°dz, (18
Landau band is taken into accougats in DM theory. This
theory was introduced by KadomtsEx] and studied further \yhere p(z) is a one-dimensionatiensity and the subsidiary
in a number of publications, s¢g] for a list of references. In  condition is
[4,5] it is called the STF theory. The density functional is

47t p(r) f p(z2)dz=<\=N/Z. (19
SSTF[p]=ﬁ p(r)3dr—2z Wd3r
1 p(Np(r") The connection between the SS and HS theories is as fol-
+ EJ fwd3rd3r’. (13)  lows. LetESYN,B,Z) denote the minimum of15) with the

subsidiary conditiong16), and letE"S(\) denote the mini-
mum of (18) with the subsidiary conditiol9). LetL(#) be

The precise connection between DM and STF theory is givetﬂqe solution to the equation

in [4], Eq. (8.11); if ESTA(N,B,Z) denotes the infimum of

(13) with subsidiary conditionf p<N, then (7/2)2=L( 7)sin{ L()/2]. (20)
=DM 2/5_ =STF,
7I]|TOE (N, 7,01 7?P=ESTR\,1,0). W e have

In STF theory, atoms arspherical with a finite radius ESSN,B.Z)=Z°L(7)’E"S(\)+Z%0(L(7n). (2D

NZ_1/3(5/24/3)_2/5.

In the opposite parameter regime, more preciselysfor There is also a corresponding connection between the mini-
larger than a certain critical valugy., DM theory also re- mizing densitiespy g 2(r) andpy>(z), for the two theories.
duces to a density functional theory. The value.gfde-  Namely,
pends on\; for A\=1 we find .= 0.148, which forZ=26

corresponds t®=2.44x 10** G. The energy functional ap- ) o[ s 1 Hs

propriate for suctsuperstrongS9 fields is [Z°L(7n)] JPN,B,Z(rL [ZL(n)] "2)d%r . —p(2)

(22)
E9p1= | [aVploz)?d3* —Z wd% . R
p P Ir| (in the sense of distributiohs
, The functionL (%) behaves like Iy for large 7, so the
N }J’ f p(r)p(r )dgrdgr, (15  convergence 0ESSto EMS is rather slow. The main interest

2 [r—r’] ' in the HS theory is thgp!!S(z) andEFS(\) can be explicitly

computed: Writingp!' as[ ¢4!%]2 one has

with the subsidiary conditions

V2(2—))
HS(z) = for A<2, (23
JP(f)d‘Q’rSN, 2 4sinfz(2—\)|z]+c] or A= G
HS(z)=\2(2+|7))"* for A=2, (24)

J p(r)dz=B/(27) forallr, . (16

where tanb=(2—\)/2. Moreover’
In fact, for = 7., the minimizer of(5) has the form

EMSON)=— 2N+ E0%2— 53 (25)
IM(z,2")=p"™(r, ,2)Vp™™(r, ,2"), 17

for A<2 and E"S(\)=E"S(2)=-1/6 for A\>2. Thus
and (5) evaluated fol™®™ is the same a&l5) evaluated for Nc=2 in HS theory. Equation(21) is essentially the state-
pPM. Atoms in SS theory have the form of a thiylinder ~ ment of Theorem 3.5 ii4], but with one refinement: By
with axis in the direction of the magnetic field and with a replacing Iny in that theorem by (#) one obtains a neater
cone-shaped region essentially cut out of its interior. Theestimate for the error term. The proof @) and(22), which
radius is finite,R=+/2Z/B. The extension along the field is follows closely the proof of Theorem 3.5 [4], is given in
infinite, but the bulk of the electrons is confined within a the Appendix.
distance~Z " [In(B/Z°] ! from the nucleus.

An even greater simplification occurs in the extreme limit

n—oo, which we refer to as théyperstrong(HS) case. In SWe recall that our energy unit is 54.4 eV.
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IIl. NUMERICAL MINIMIZATION
OF THE DENSITY-MATRIX FUNCTIONAL

In this section we describe in some detail the numerical
methods used to study the DM theory. The task is to mini-

mize numerically the density-matrix functiond) under the
constraintg4) andN= [ p(r)dr. The density matrix can be
expressed in the form

FH(Z’Z')Z,Zl Nt BH(Z)* 6 (2), (26)
whereqb 1(2) is an orthonormal basis in the Hilbert space

L%(R, dz) of one-dimensional wave functions for each
and Oﬁ)\ri<B/(27r) by condition(4). For the minimizer
T'OM it turns out that

ro_
o

with j<j'<e. In fact, j<j'<j. with a j,<e that is in-
dependent of, (but depends om), cf. [4], p. 553. The
functions¢jrL satisfy the one-dimensional Schiinger equa-
tion

<

=

B/2w
0

if

. . .r
if j>jg

1
Ie

(27)

z
r]

02
_P_

pr(r’)
[r=r']

Toprdr '}¢}L<z>=egi¢}i<z> (28)

and for each IJ,Z,B) there exists a uniqug® such that
j=<j_* ifand only if e}< uPM, and(26) is the solution of the
minimization problem. Our strategy is to minimize the den-
sity matrix functional(5) by iteratively solving the set of
nonlinear eigenvalue equatiori®8) and determiningu PV
such that the constrairfior=N is satisfied. The eigenvalue
equations are invariant with respect to rotation aroundzthe
axis. Hence they depend only dn, |, but even with this
reduction(28) yields an infinite number of eigenvalue equa-
tions, one for each value of, |. We reduce them to a finite
number by making thér | | axis discrete. The DM atom has
a finite radiusR<Ry=2N/B. We therefore only have to
consider the eigenvalue equations for which|<R. Let

KRISTINN JOHNSEN AND JAKOB YNGVASON

Let
A z (32
"9z A2+ 22

and Ietzp, denote the eigenfunctions bf, and ui' the cor-

responding eigenvalues, so tﬁmw, ,&i”fpi”. We express
FAJ‘(Z) in terms of approximate eigenfunctionstgf which

correspond to th&, lowest eigenvalues. Hence we write

Np
6 2=3 cfula), (33
where ¢ is an approximation fo[a:/;i”. We determine ap-
proximations for the basis functiong' and their eigenvalues
i by the method of finite element&EM) for eigenvalue
problems, dividing the interval —z,,z,], z,>0 into
element$ and choosing a polynomial basis of degree 5
within each, cf[22]. Let these solutions bg;'(z) where we
induce the boundary condition théf'(+z,) =0. The eigen-
value corresponding t@{'(z) is denoted byu['. Let N, be
the number of samples af{'(z) values we choose to work
with along thez axis and define

(39)

Then the samples we work with ang'((1 — 1/2)A|—z,),
I— .Nj. We use the valueg| as approximations for

. ThIS basis is chosen because it is expected to be close to
the solutlons¢n 1(2) and as such is a natural starting point
for the self- conS|stent iterations. We have now defined the
set over which we numerically minimiz&).

We solve the set of nonlinear equatiof®8) in a self-
consistent manner iteratively. We define the chain of poten-
tials

VE(N=(1-a)V¥E P(r)+avy V(r) (35)

for k>0 and V{"’=0, ae(0,1].5 Let qb”Al ®(2) be the
eigenfunctions of the operator

N, be the number of eigenvalue equations we choose to

work with. Let

. 29
L_Nl_l' ( )
We solve(28) at theN, pointsnA, , n=1,... N, , onthe
[r,| axis. Let
1 ifre((n=21)A, ,nA ]
0 (1) = . (30)
0 otherwise.

We minimize the density-matrix functionéb) with density
matrices of the form

o NL
r@a=2 3 NG (2 oM (2) O (Ir ).
(31)

HMA W =h +V(r), (36)

with

F(k(z 2’
d3r’,

(37

V()= f

where

“The number of elements we use are 5060, and their width varies
such that the smallest elements are closest to the origin.

SSelf-consistent iterations of the kind discussed here are in general
not convergent. The coefficient {1«) acts as a damping factor on
the iterations. The value af is in practice chosen by trial and error
as high as possible without inducing instability. That way the itera-
tions converge as fast as is possible.
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. N N e the Laplacian in order to determing at the interior points.
F( (z,2')= E E AT g ‘(') We solve the finite difference scheme by simultaneous over-
j=1n=1 relaxation. We find that an over-relaxation coefficient of
< ¢{1AL ,<k>(z)0#(|rL|)- (39) 1.8 yields fast convergence for this problem for our choice of

N, andN;. When we use the finite difference scheme we
Note thatd,nAL ©)(2) = y"(z). With an appropriate choice of predetermina/{¥ at a few interior grid points by direct in-
! nA, (K tegration. We then perform the over-relaxation iterations un-

a (we usex €[0.01,0.1) the sequencew (2) tums out til we obtain agreement with the predetermined values up to
to be convergent and a desired accuracy. We choose to iterate until the first five
lim ¢”Ai 0z = (;/;”Ai(z) (39) digits of the solution are identical to all the predetermined
k—o0 values.

Now we are ready to go through one iteration of the self-
consistent iteration scheme in detail. Let us consider the
kth step in the iteration. At the start of this step we know
F(" D (recall that ¢)”AL (0 w?). First we determine

N Ny V(k D and thenVv{¥ according to the scheme described
V(Z,U)ZIEl Zl Vinbl(2) 65 (1), (40) above. We next determine the matrix elements
=1 n=

in L?([—zmy,2m],d2). This defines our self-consistent itera-
tion scheme. To be consistent with the discrete forni38j
we work with the potential&/{) andV{® of the form

where Hpae fl// HAL M yhdz

1 ifZE((|—1)AH—Zm,|A”—Zm]
m%

. 47 —~
otherwise. “) = Smel + f YIVE(r) Yhdz (44)
To determineg(37) we calculate the boundary values on the . .
N, X N; grid we work on by direct integration, for eachn=1, ... N, . Now the eigenvectors of the matri-
cesHM () orrespond to the coefficients ™ in
J, F )(z z') > (u
3 r_ ’ Ko
—dr'=— dr\/r—F,(z,z) Ny
r—r f x (K
el : # V@)= ), @5)
o re+r’2 “2
XQ-v2 57|
2rr and we denote their corresponding agenvalue&%\) ),

whereQ, _,, is an associated Legendre function. The direct’ hat is,
integration of(37) is very slow but it is, on the other hand,

very accurate. To determing at interior grid points faster H"4L 0 <15nAi W(z)= nAL k)sﬁnAi Wz). (46
numerically we do the following: We note th&37) is the
solution of the Poisson equation To determine the eigenvectors and eigenvalues of the matri-
AL LK) : : .
K K cesHn L% we use the eigenroutines frof3]. Finally, at
vaV=T, 43) g Fa3] y

the end of the iteration step we determinB™ () such that
With the boundary values determined by the direct integrafrg?(z’z)dsr: N. We are then ready for the next step of the
tion we use standard five point difference approximation tateration.
We continue the iterations untiE®(I'0) “stops”
TABLE 1. Ground-state energy (in keV) of iron atoms  Cha@nging. More precisely we choose to stop when the change
(Z=26) as a function of the magnetic field B (in G) and the ratio N £7"(I'") between iterations is in the seventh digit.

A=N/Z of electron number to nuclear charge. We calculate with N, =101, N;=201-301, and
N,=30-60. We chose,, in such a way that 2, is at least

)\B 1010 10! 1012 1012 1014 three times longer than the length of the atom the calculation

0.1 —3202 -8188 ~2080 —5258 —1224 TABLE Il. The ratio\.=N./Z of the maximal negative charge

0.2 —475  —1207 3056  —7756  —185.2 to nuclear charge as a function Bf(in G) for iron (Z=26).

0.3 —5.838 —14.80 —-3747 —-95.04 —230.2

0.4 —6.670 —16.838 —4264 -108.0 -264.0 B A B A

0.5 ~-7.277 —18.41 —46.56 -117.9 —289.4

0.6 ~7744 -1958 —d4953 —1252 3093  10° 1.020 16° 1.110

07 ~8.102 -2042 -5173 -1306 -3237  10¢ 1.026 16° 1.153

08 ~8321 -2101 -—5312 —1341 —3335  10? 1.035 167 1.184

0.9 -8475 —2141 -5385 —1366 -3399  10° 1.043 10° 1.232

1.0 -8521 —2147 —5438 —1378 —3427 10 1.061
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yields. We obtained this criterion by increasing until the TABLE IV. Comparison of the ground-state ener@y keV) of
ground-state energy we obtained became stable in the firpn atoms in DM theory, STF theory, and HS theory at various
six digits. field strengthsB (in G). See also Fig. 3.
To calculate the energg®™ we note that
B EDM ESTF EHS
Np N
> f)\peridzrizg S 2mnAZ\M M 101 ~21.47 ~2157
[ b =1n=1 b 10 —54.37 ~54.07
_ DM__ ADM DM 108 —-137.8 —-135.8
=K AT 2REE “7) 104 —342.7 —341.2
Here KPM, APM andRPM are, respectively, the kinetic, at-  10%° —786.3 —857.0 —0.3346
tractive, and repulsive parts 6PM. With our choice of basis 10 —1623 —2153 —535.3
" andV(r) as the attractive potential we have 107 —3065 —5405 —1797
1048 —5264 —13583 —3913
T, (2,2')
E”ZZI —TJrV(r)F,L(z,z) d3r
?7'=z general a lot larger thal{®™. In the case of the STF theory
Ny P ASTF=15k STF which is the low magnetic field strength limit
= AN qsfi(z){ — —+V(r)| ¢ (2)d%r for the DM theory. Therefore a slight relative error AY™
=1 b 9z . yields a much larger relative error iKPV. Based on the
Ny Ny Np N, information given above, we estimate th_e_numerical error of
_ j AMLenen 6-(|r . ]) the scheme to be abottl in the fourth_ digit of the_ground-
SIE &= I state energy. We therefore show the first four digits when we

present our results of the energy.
X ' (2) hnihe(2)dr The estimate of\. is done in the following way.
Ny Np Np Mo EPM(N, ) is calculated as a function af which is a strictly
_ 2 2 mnAZN™LCn N 50 0 convex f_unct|on in our approxmatlon, duga to the finite box.
S EE & LAk The minimum of this function then determines. However,
the function is extremely flat around the minimum so it is
difficult to determine its position. We make a linear approxi-
. ZW“AfA?AL(CJnI)ZMIn:KDM_ADM' mation of EPM(\, ) using two close lying points below the
minimum. The value thus obtained gives a lower bound on
(48) )\ close to the true value.

Since
IV. ATOMIC PROPERTIES IN DM THEORY
APM = —f V(T (z,2)d (49 The results of our numerical computations are presented
in Tables 1-VI and illustrated in Figs. 1-5. As remarked
we obtain before, iron is of special importance in astrophysical context,

and for this reason we state our results for the reference
valueZ=26. The scaling relation®) and(10) allow an easy
transformation to other values. Moreoven, this section
magnetic fields are measured in gauss and energies inkeV
KPM=E"+ ADM, (51) facilitate comparison with astrophysical data and other com-
putations. To transform into the units in which the original
P Hamiltonian (1) is written it should be kept in mind that
R :E(E —E"). (52 there the energy unit is 54.4 eV and the unit for magnetic-
field strength is 9.4810° G. The dimensionless parameter
This is how we evaluate the ground-state energy and thgg=B/Z®> has for Z=26 and B=10? G the value
terms it is composed of. Regarding the accuracy in the evalus.053x< 10~ 3. This may seem small for region 4, but as dis-
ation of KPM, one should be aware of the fact tet™ is in ~ cussed in[5], the relevant semiclassical parameter is really

1
EPM=Z(E'+E"), (50)

TABLE lll. The binding energy at maximal negative ionization in DM theory.

B [EPM(\o) —EPM(1))/EPM(1) B [EPM(\¢) — EPM(1)1/EPM(1)
101 0.0011 18° 0.0073
10t 0.0008 166 0.0123
1012 0.0035 167 0.0232
108 0.0038 168 0.0203

10" 0.0050
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FIG. 3. The ground-state energy of iron atoms as a function of
the magnetic field strengtB in DM theory (crosses STF theory
(short dashes and HS theorylong dashes

FIG. 4. Comparison of the electron density in STF theory
(dashed curveand the spherically averaged density in DM theory
(solid curve for B=10" G (right) andB=10"? G (left).

7' and at the quoted values a and B we have of )\_is difficult and the values quoted should be regarded as

7'°=0.36. lower bounds at the respective field strengths.
Figures 1 and 2 show contour plots of the electronic den-

sities of iron atoms witiN=2Z according to DM theory at

four different field strengths, ranging from %ao 104 G. It V. COMPARISON WITH OTHER THEORIES
is evident that in the weakest field the bulk of the electrons is
spherically distributed around the nucleus. With increasin
field strength the sphericity gets more and more distorte
The atom is composed of cylindrical shells that decrease ila
number as the field goes up. Between'*land 16* G a
transition to a cylindrical shape with a single shell takes
place. The number of shells corresponds to the number
eigenfunctions of the one-dimensional Safinger operators as 16° G, while the electronic densities in DM theory devi-

=922+ V;"(2) that contribute to the density matrix in 40 appreciably from the spherical shape of STF theory al-
the sum(26). The critical value, at which this number has ready at 18’ G as seen in Fig. 1. Thus in this case at least,
dropped to one was determined numerically Xor 1 to be  the energy calculations are much less sensitive to the details
7.=0.148. This corresponds t@=2.44x10" G for  of the model than density calculations. There is, however,
Z=26. another way of comparing the densities in STF and DM
In Table | the ground-state energy) of iron is shown as theories. In Fig. 4 we have plotted together the STF density
a function of the field strength f@ between 18 and 16*G  and thespherically averagedM density, and one sees that
and for various values of the ratio=N/Z of electron num- they are quite close for the bulk of the electrons, up to fields
ber to nuclear charge. A comparison of some of these valuesf the order 1& G. (The fine structure in the DM curve is
with results obtained by other methods is given in the nexpartly a numerical artifact.
section. It is apparent from Fig. 3 that the DM energy values ap-
Table Il shows the results for, as a function oB in DM proach the HS values as the field goes up, but the conver-
theory. At the extremely strong field of ¥0G, correspond- gence is very slow and the asymptotic regime has not yet
ing to »'°=5.7, one finds\ ;= 1.232, which is still quite far been reached at the strongest fields considered for the DM
from the HS value\.= 2. However, compared with Thomas- computations. On the other hand, it is interesting how well
Fermi theories, wheri .. is always 1[20], the negative ion- the HS density23) fits the DM density integrated over the
ization is noticeable even for the weaker fields. The valuecross section of the atom as shown in Fig. 5.
Ac=1.046 for iron atB=10" G corresponds to an excess Finally, in Tables V and VI we compare the ground-state
negative charge of 1.2 electrons. The binding energy of thenergyE computed in the DM and STF theories with values
excess charge in DM theory is shown in Table IIl. obtained by some other methods in the literature. The com-
As remarked at the end of Sec. Ill a precise determinatioparison is made for iron at #0G, since this case has been

As discussed in Sec. Il, DM theory simplifies in the two
imits, »—0 and »—o, which are, respectively, described
y the STF and HS theories. In order to study the rate of this
onvergence we have compared the ground-state energies at
A=1 in these three models in Table IV and plotted them in
Fig. 3. It is remarkable how closely the STF ground-state
nergy approximates the DM energy even at fields as strong

TABLE V. Ground-state energgin keV) of iron atoms aB=10"2 G according to DM theory, HF theory
[17], DF computations, denoted BF15] and D’ [16], RV computationg23], TFD theory[12], and STF
theory[8].

DM HF DF? DFP RV TFD STF
E —54.38 —55.10 —56.10 —58.3 —53.13 —56.21 —54.07
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TABLE VI. The composition of the ground-state energy(in one-dimensional density functional theory that describe, re-
keV) of iron atoms aB=10"* G in STF theory, HF theory, and DM  spectively, its low and high field limits. WherB(z3)% is of
theory.K is the kinetic energyA the attractive potential energy due order unity these simpler theories are numerically and con-
to the nucleusR the energy of Coulomb repulsion, atl, the  ceptually wrong and the full DM theory should be used. The
exchange energy. guantitative agreement of DM theory with Hartree-Fock cal-
culations is quite good in strong fields; for ironB 102 G

E K A R Fex the difference in binding energies is less than 2%. The DM
STE —54.07 10.81 —97.33 32.44 0 theory, however, is much simpler computationally than HF
HF —55.10 10.6 —954 327 —3.06 theory for large atoms and appears suitable as a starting point
DM -5438 1043 —96.90 32.09 0 for more refined approximations and for the study of molecu-
lar binding in strong fields.
considered in a number of sources. In Table V the value for ACKNOWLEDGMENTS
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APPENDIX
VI. CONCLUSIONS
) ) ) We give here a proof of Eqg21) and (22). It consists

We have carried out a numerical study of the density Magssentially of an improvement of the estimates in Proposition
trix model that describes exactly the quantum mechanicag 3 in[4].
ground state of atoms in a homogeneous magnetic field in \vith () defined by(20) we define for any density a
the asymptotic limit when the nuclear chargethe electron  rescaled density,, by
numberN, and the magnetic fiel® tend to~ with N/Z 7
fixed andB/Z*3— . The calculations demonstrate the fol- p(r, . 2)=Z*9L(n)p,Zn"% . ZL(n)2). (A1)
lowing features of heavy atoms in high magnetic fields as the
field strength increases: A transition from an approximateh\Ve can then write the SS functiondls) as
spherical shape to a highly elongated shape, accompanied by
a decrease in ground-state energy and increasing ability to 585[9]223'-(77)25?;8[1’771 (A2)
bind excess electrons. We have also compared the DM SS - )
model with the semiclassical Thomas-Fermi theory and th&/Nere&;” is defined by

np,\?
600 o Efflpn]:f (#) dsr‘J PNV, (r)dr
(a)
1 ’ AV EPFEM
400 F g +§ p(NV,(r=r")p,(r")drd>r’,
= (A3)
200+ 8
with the rescaled Coulomb potential
0 R V(D=L {2+ 9 (272 (Ag)
-0.3-0.2-0.1 0 0.1 0.2 0.3
4000 F— ‘ : : ‘ The functionalé}® has a ground-state energy
(b) ]
3000 , : eSO =inf| 5Tp,J0,¢% [ p,=0,
a 2000F :
: fp,,(rL ,z)dzsl] (A5)
1000F E
0 ) . and a corresponding minimizing density denotecb@? Itis
‘ = ' related topSS by the scaling/A1). The energyE>®is related
-0.04-0.02 0.00 0.02 0.04 to ESS by the scaling/A2),

z (a.u.)
ESYN,Z,B)=Z3L(9)?ESN). (AB)
FIG. 5. Comparison of the electron density in HS the@gshed
curve and the integral over, of the density in DM theorysolid ~ The improvement of Proposition 3.3 [d] is stated in the
curve for B=10" G (a) andB=10' G (b). following lemma.
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Lemma A.1For any choice ok and T there is a constant

C(\,T) such that 1.0
0.9
f P(M,O)dzh—f V,p|<C(\,T)L(n)~* (A7) =
= 0.8
holds, provided p=0 satisfies f[p<\, p(r, ,z2)=0 for S
Ir.|>2, and = 0.7
—
2
Np(r, ,z L E
T[p]=f (—p( RLIA RN 0.6
Jz
0.5 < , s s
We can choose C(\,T)=\+82\Y4T344+ 8 /7T 10° 10° 10" 10® 10® 10%
X In(y2+/6). n
Proof : Following the proof of Proposition 3.34] we
write the difference on the left side gA7) asA;+A,+ Az FIG. 6. The ratioL(7)/In.
with
A1=—f | V. (0p(n)dr, (A8) 2sinh Y(a/\2)—L(7)=0 (A15)
r =1
s by the definition(20) of L( 7). Using (A15) we get
Az=f| | lVr,(r)[p(u,O)—p(r)]d r (A9)
r =

sup |[2sinh Y(al/r)—L(5)]rY?
and o<r<2

_ - _oainh-l
A3=f 1_f| | V,(ndz = sup |[2sint Y(alr)—2sinh Y(al\2)
r =1

p(r.,00d%r, . (A10) vere s
With the same arguments as[#i] we obtain

+2sini Y a/\2)—L(7)]rY4
= sup |[2sinh Y(a/r)—2sinh L(al\2)]rY?

A
|A1|$r77), (A11) 0<r<3
ata’+r?
8‘/5 1/4T3/4 =2 sup In(\/ilr)+|n — | |r¥?
[Aal =< T AT (A12) o<r<i2 a+a?t2
<2 sup |In(y2/r)r'3
ands o=sr<.2
2
= I —1 1/2 _ 2 a+ P _|_r
|As| ”L(msmh {n " L(r [} =1 |p(r, 0, 2 sup |n ) e
o<r<\2 ata +2
V2| 2
$2T1/2\/27T‘f _L(r]) <25’4In2+25’41n[(1+\/§)/\/§]:25/4|n(\/§+ \/6)
0
(A16)

xsinh Y Y[ L(p)r]}—1

2 1/2
rdr] : (AL3) This concludes the proof.

In analogy with Proposition 3.4 if4] the following
Now we deviate fron{4]. Estimating the integral ifA13)  lemma is a corollary of Lemma A.1.
we obtain Lemma A.2For p as in Lemma A.1 there is a constant
2 C’(\,T) such that

Asl<2\27TVRV4 gy

o=r=<,2

f Jp(r)vn(r‘f’)p(r’)d3rd3 '—Jﬁz)zdz

X sinh Y Y[ L(7)r]}— 1} ri/2

<C'(\T)L(np) ™1, (A17)
<8\nTHn(\2+ 6)/L( 7). (A14) -
wherep(z)=[p(r, ,2)dr, .
The last inequality comes from the following. If  The proof of(21) and(22) is now identical to the proof of
a=+/7/L(7), then Theorem 3.4 in4] with Lemmas A.1 and A.2 in place of

Propositions 3.3 and 3.4.
In order to illustrate the difference between the function
8In [4], p. 541 there is a power of 1/2 missing ®rin the estimate L (%) and the approximatioh(#)~In» used in[4], the ratio
for As. L(#)/Iny is plotted in Fig. 6.
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