23 research outputs found

    In vitro methods to ensure absence of residual undifferentiated human induced pluripotent stem cells intermingled in induced nephron progenitor cells

    Get PDF
    ヒトiPS細胞から作製した腎前駆細胞に未分化な細胞が残存していないことを確認する方法の開発. 京都大学プレスリリース. 2022-11-16.A new sensitive method to detect for minute amounts of contaminating undifferentiated iPS cells. 京都大学プレスリリース. 2022-11-21.Cell therapies using human induced pluripotent stem cell (hiPSC)-derived nephron progenitor cells (NPCs) are expected to ameliorate acute kidney injury (AKI). However, using hiPSC-derived NPCs clinically is a challenge because hiPSCs themselves are tumorigenic. LIN28A, ESRG, CNMD and SFRP2 transcripts have been used as a marker of residual hiPSCs for a variety of cell types undergoing clinical trials. In this study, by reanalyzing public databases, we found a baseline expression of LIN28A, ESRG, CNMD and SFRP2 in hiPSC-derived NPCs and several other cell types, suggesting LIN28A, ESRG, CNMD and SFRP2 are not always reliable markers for iPSC detection. As an alternative, we discovered a lncRNA marker gene, MIR302CHG, among many known and unknown iPSC markers, as highly differentially expressed between hiPSCs and NPCs, by RNA sequencing and quantitative RT-PCR (qRT-PCR) analyses. Using MIR302CHG as an hiPSC marker, we constructed two assay methods, a combination of magnetic bead-based enrichment and qRT-PCR and digital droplet PCR alone, to detect a small number of residual hiPSCs in NPC populations. The use of these in vitro assays could contribute to patient safety in treatments using hiPSC-derived cells

    成体肝臓・膵外分泌・腸におけるSox9陽性前駆細胞領域からの持続的細胞供給

    Get PDF
    京都大学0048新制・論文博士博士(医学)乙第12564号論医博第2030号新制||医||988(附属図書館)28908京都大学大学院医学研究科外科系専攻(主査)教授 斎藤 通紀, 教授 稲垣 暢也, 教授 坂井 義治学位規則第4条第2項該当Doctor of Medical ScienceKyoto UniversityDA

    Bioinformatic analyses of miRNA-mRNA signature during hiPSC differentiation towards insulin-producing cells upon HNF4α mutation

    Get PDF
    Mutations in the hepatocyte nuclear factor 4α (HNF4α) gene affect prenatal and postnatal pancreas development, being characterized by insulin-producing β-cell dysfunction. Little is known about the cellular and molecular mechanisms leading to β-cell failure as result of HNF4α mutation. In this study, we compared the miRNA profile of differentiating human induced pluripotent stem cells (hiPSC) derived from HNF4α+/Δ mutation carriers and their family control along the differentiation timeline. Moreover, we associated this regulation with the corresponding transcriptome profile to isolate transcript–miRNA partners deregulated in the mutated cells. This study uncovered a steep difference in the miRNA regulation pattern occurring during the posterior foregut to pancreatic endoderm transition, defining early and late differentiation regulatory windows. The pathway analysis of the miRNAome–transcriptome interactions revealed a likely gradual involvement of HNF4α+/Δ mutation in p53-mediated cell cycle arrest, with consequences for the proliferation potential, survival and cell fate acquisition of the differentiating cells. The present study is based on bioinformatics approaches and we expect that, pending further experimental validation, certain miRNAs deregulated in the HNF4α+/Δ cells would prove useful for therapy

    Diabetes Caused by Elastase-Cre-Mediated Pdx1 Inactivation in Mice

    Get PDF
    発生段階で膵臓の外分泌組織を欠くマウスは、糖尿病になる --機能的膵島作製における外分泌組織との共存の重要性--. 京都大学プレスリリース. 2016-02-18.Endocrine and exocrine pancreas tissues are both derived from the posterior foregut endoderm, however, the interdependence of these two cell types during their formation is not well understood. In this study, we generated mutant mice, in which the exocrine tissue is hypoplastic, in order to reveal a possible requirement for exocrine pancreas tissue in endocrine development and/or function. Since previous studies showed an indispensable role for Pdx1 in pancreas organogenesis, we used Elastase-Cre-mediated recombination to inactivate Pdx1 in the pancreatic exocrine lineage during embryonic stages. Along with exocrine defects, including impaired acinar cell maturation, the mutant mice exhibited substantial endocrine defects, including disturbed tip/trunk patterning of the developing ductal structure, a reduced number of Ngn3-expressing endocrine precursors, and ultimately fewer β cells. Notably, postnatal expansion of the endocrine cell content was extremely poor, and the mutant mice exhibited impaired glucose homeostasis. These findings suggest the existence of an unknown but essential factor(s) in the adjacent exocrine tissue that regulates proper formation of endocrine precursors and the expansion and function of endocrine tissues during embryonic and postnatal stages

    Combined inhibition of menin-MLL interaction and TGF-β signaling induces replication of human pancreatic beta cells

    No full text
    Both type 1 and type 2 diabetes are associated with hyperglycemia and loss of functional beta cell mass. Inducing proliferation of preexisting beta cells is an approach to increase the numbers of beta cells. In this study, we examined a panel of selected small molecules for their proliferation-inducing effects on human pancreatic beta cells. Our results demonstrated that a small molecule inhibitor of the menin-MLL interaction (MI-2) and small molecule inhibitors of TGF-β signaling (SB431542, LY2157299, or LY364947) synergistically increased ex vivo replication of human beta cells. We showed that this increased proliferation did not affect insulin production, as a pivotal indication of beta cell function. We further provided evidence which suggested that menin-MLL and TGF-β inhibition cooperated through downregulation of cell cycle inhibitors CDKN1A, CDKN1B, and CDKN2C. Our findings might provide a new option for extending the pharmacological repertoire for induction of beta cell proliferation as a potential therapeutic approach for diabetes

    Impact of Sox9 Dosage and Hes1-mediated Notch Signaling in Controlling the Plasticity of Adult Pancreatic Duct Cells in Mice.

    Get PDF
    In the adult pancreas, there has been a long-standing dispute as to whether stem/precursor populations that retain plasticity to differentiate into endocrine or acinar cell types exist in ducts. We previously reported that adult Sox9-expressing duct cells are sufficiently plastic to supply new acinar cells in Sox9-IRES-CreERT2 knock-in mice. In the present study, using Sox9-IRES-CreERT2 knock-in mice as a model, we aimed to analyze how plasticity is controlled in adult ducts. Adult duct cells in these mice express less Sox9 than do wild-type mice but Hes1 equally. Acinar cell differentiation was accelerated by Hes1 inactivation, but suppressed by NICD induction in adult Sox9-expressing cells. Quantitative analyses showed that Sox9 expression increased with the induction of NICD but did not change with Hes1 inactivation, suggesting that Notch regulates Hes1 and Sox9 in parallel. Taken together, these findings suggest that Hes1-mediated Notch activity determines the plasticity of adult pancreatic duct cells and that there may exist a dosage requirement of Sox9 for keeping the duct cell identity in the adult pancreas. In contrast to the extended capability of acinar cell differentiation by Hes1 inactivation, we obtained no evidence of islet neogenesis from Hes1-depleted duct cells in physiological or PDL-induced injured conditions

    Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells

    No full text
    Cell-identity switches, in which terminally differentiated cells are converted into different cell types when stressed, represent a widespread regenerative strategy in animals, yet they are poorly documented in mammals. In mice, some glucagon-producing pancreatic α-cells and somatostatin-producing δ-cells become insulin-expressing cells after the ablation of insulin-secreting β-cells, thus promoting diabetes recovery. Whether human islets also display this plasticity, especially in diabetic conditions, remains unknown. Here we show that islet non-β-cells, namely α-cells and pancreatic polypeptide (PPY)-producing γ-cells, obtained from deceased non-diabetic or diabetic human donors, can be lineage-traced and reprogrammed by the transcription factors PDX1 and MAFA to produce and secrete insulin in response to glucose. When transplanted into diabetic mice, converted human α-cells reverse diabetes and continue to produce insulin even after six months. Notably, insulin-producing α-cells maintain expression of α-cell markers, as seen by deep transcriptomic and proteomic characterization. These observations provide conceptual evidence and a molecular framework for a mechanistic understanding of in situ cell plasticity as a treatment for diabetes and other degenerative diseases

    Generation of human islet cell type-specific identity genesets

    No full text
    Generation of surrogate cells with stable functional identities is crucial for developing cell-based therapies. Efforts to produce insulin-secreting replacement cells to treat diabetes require reliable tools to assess islet cellular identity. Here, we conduct a thorough single-cell transcriptomics meta-analysis to identify robustly expressed markers used to build genesets describing the identity of human α-, β-, γ- and δ-cells. These genesets define islet cellular identities better than previously published genesets. We show their efficacy to outline cell identity changes and unravel some of their underlying genetic mechanisms, whether during embryonic pancreas development or in experimental setups aiming at developing glucose-responsive insulin-secreting cells, such as pluripotent stem-cell differentiation or in adult islet cell reprogramming protocols. These islet cell type-specific genesets represent valuable tools that accurately benchmark gain and loss in islet cell identity traits.</p

    Diabetes recovery by age-dependent conversion of pancreatic δ-cells into insulin producers

    No full text
    Total or near-total loss of insulin-producing β-cells occurs in type 1 diabetes. Restoration of insulin production in type 1 diabetes is thus a major medical challenge. We previously observed in mice in which β-cells are completely ablated that the pancreas reconstitutes new insulin-producing cells in the absence of autoimmunity. The process involves the contribution of islet non-β-cells; specifically, glucagon-producing α-cells begin producing insulin by a process of reprogramming (transdifferentiation) without proliferation. Here we show the influence of age on β-cell reconstitution from heterologous islet cells after near-total β-cell loss in mice. We found that senescence does not alter α-cell plasticity: α-cells can reprogram to produce insulin from puberty through to adulthood, and also in aged individuals, even a long time after β-cell loss. In contrast, before puberty there is no detectable α-cell conversion, although β-cell reconstitution after injury is more efficient, always leading to diabetes recovery. This process occurs through a newly discovered mechanism: the spontaneous en masse reprogramming of somatostatin-producing δ-cells. The juveniles display 'somatostatin-to-insulin' δ-cell conversion, involving dedifferentiation, proliferation and re-expression of islet developmental regulators. This juvenile adaptability relies, at least in part, upon the combined action of FoxO1 and downstream effectors. Restoration of insulin producing-cells from non-β-cell origins is thus enabled throughout life via δ- or α-cell spontaneous reprogramming. A landscape with multiple intra-islet cell interconversion events is emerging, offering new perspectives for therapy
    corecore