684 research outputs found

    Mechanics of local buckling in wrapping fold membrane

    Get PDF
    Mechanics of a local buckling, which is induced by wrapping fold of a creased membrane, is discussed experimentally, theoretically, and numerically in this paper to examine the condition for the local buckling. The theoretical analysis is performed by introducing one-dimensional wrapping fold model, and the dominant parameters of the condition for the local buckling are obtained, which are expressed by the tensile force, the membrane thickness, and the radius of the center hub. The experimental results indicate that the interval of the local buckling is proportional to the diameter of the center hub, and the results are qualitatively agreement with the FEM results

    Treatment Strategy According to Findings on Pressure-Flow Study for Women with Decreased Urinary Flow Rate

    Get PDF
    Purpose. In women who reported a weak urinary stream, the efficacy of treatment chosen according to the urodynamic findings on pressure-flow study was prospectively evaluated. Materials and Methods. Twelve female patients with maximum flow rates of 10 mL/sec or lower were analyzed in the present study. At baseline, all underwent pressure-flow study to determine the degree of bladder outlet obstruction (BOO) and status of detrusor contractility on Schäfer's diagram. Distigmine bromide, 10 mg/d, was given to the patients with detrusor underactivity (DUA) defined as weak/very weak contractility, whereas urethral dilatation was performed using a metal sound for those with BOO (linear passive urethral resistance relation 2–6). Treatment efficacy was evaluated using the International Prostate Symptom Score (IPSS), uroflowmetry, and measurement of postvoid residual urine volume. Some patients underwent pressure-flow study after treatment. Results. Urethral dilatation was performed for six patients with BOO, while distigmine bromide was given to the remaining six showing DUA without BOO. IPSS, QOL index, and the urinary flow rate were significantly improved in both groups after treatment. All four of the patients with BOO and one of the three with DUA but no BOO who underwent pressure-flow study after treatment showed decreased degrees of BOO and increased detrusor contractility, respectively. Conclusions. Both BOO and DUA cause a decreased urinary flow rate in women. In the short-term, urethral dilatation and distigmine bromide are efficacious for female patients with BOO and those with DUA, respectively

    On the Differential Submodules of Modules

    Get PDF

    Pathophysiology of Tumor Neovascularization

    Get PDF
    Neovascularization is essential to the process of development and differentiation of tissues in the vertebrate embryo, and is also involved in a wide variety of physiological and pathological conditions in adults, including wound repair, metabolic diseases, inflammation, cardiovascular disorders, and tumor progression. Thanks to cumulative studies on vasculature, new therapeutic approaches have been opened for us to some life-threatening diseases by controlling angiogenesis in the affected organs. In cancer therapy, for example, modulation of factors responsible for tumor angiogenesis may be beneficial in inhibiting of tumor progression. Several antiangiogenic approaches are currently under preclinical trial. However, the mechanisms of neovascularization in tumors are complicated and each tumor shows unique features in its vasculature, depending on tissue specificity, angiogenic micromilieu, grades and stages, host immunity, and so on. For better understanding and effective therapeutic approaches, it is important to clarify both the general mechanism of angiogenic events and the disease-specific mechanism of neovascularization. This review discusses the general features of angiogenesis under physiological and pathological conditions, mainly in tumor progression. In addition, recent topics such as contribution of the endothelial progenitor cells, tumor vasculogenic mimicry, markers for tumor-derived endothelial cells and pericytes, and angiogenic/angiostatic chemokines are summarized

    Interleukin 17A plays a role in lipopolysaccharide/d-galactosamine–induced fulminant hepatic injury in mice

    Get PDF
    AbstractBackgroundLipopolysaccharide/d-galactosamine (LPS/GalN)–induced hepatic injury is an experimental model of fulminant hepatic failure in which tumor necrosis factor alpha (TNF-α) plays a pivotal role. Moreover, it was reported from our laboratory that interleukin (IL) 17A enhanced production of TNF-α by the Kupffer cell.ObjectiveThe purpose of this study was to determine the role of IL-17A in LPS/GalN-induced hepatic injury in mice.MethodsLPS/GalN was injected into three mouse models: wild-type (WT) mice, IL-17A knockout (KO) mice, or IL-17A KO mice treated with recombinant mouse (rm) IL-17A homodimer (KO + rmIL-17A). Survival was assessed for 24 h after LPS/GalN injection, and histopathologic findings were evaluated at various time points after LPS/GalN injection for neutrophil and apoptosis markers. After LPS/GalN injection, expression of the inflammatory mediators TNF-α, IL-6, monocyte chemotactic protein 1, IL-17A, high-mobility group box 1, and soluble intercellular adhesion molecule 1 was assessed in serum by enzyme-linked immunosorbent assay.ResultsSurvival was higher in KO mice compared with WT mice after LPS/GalN injection. However, in KO + rmIL-17A mice, mortality was not significantly different compared to the other groups. Neutrophil infiltration and apoptosis were significantly greater in WT mice than KO mice. Furthermore, serum alanine aminotransferase, serum TNF-α, monocyte chemotactic protein 1, IL-17A, high-mobility group box 1, and soluble intercellular adhesion molecule 1 levels were also significantly greater in WT mice than KO mice. In KO + rmIL-17A mice, these levels were similar to those in WT mice.ConclusionsIL-17A is a key regulator in hepatic injury caused by neutrophil-induced inflammatory responses after LPS/GalN injection

    A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    Get PDF
    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl4)-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl4 (0.2 ml/kg 2×wk/6wks) followed by alcohol intragastrically (up to 25 g/kg/day for 3wks) and with continued CCl4. We observed that combined treatment with CCl4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for 53 damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Harcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways

    On-Orbit Demonstration of Innovative Multifunctional Membrane Structure for Ultra-Lightweight Solar Arrays and Array Antennas by 3U CubeSat OrigamiSat-1

    Get PDF
    The 3U CubeSat OrigamiSat-1’s deployable membrane structure is 1m-by-1m in size after deployment and is stowed in less than 1U CubeSat (10cm-by-10cm-by-8cm), including a hold-and-release mechanism. The major significance of the structural concept is that it allows the attachment of thin-film devices, such as thin-film solar cells or flexible substrates for antennas throughout the membrane. This was achieved by two features: (i) use of textile and (ii) invention of hybrid boom made of tubular carbon composite and metal convex tape. In addition, a visual membrane measurement system consisting of stereo cameras was developed. This paper describes the new technologies developed for this CubeSat
    corecore