SSC21-VIII-06

35th Annual Small Satellite Conference, Aug. 7-21, 2021 **Advanced Technologies 2**

On-orbit Demonstration of **Innovative Multifunctional Membrane Structure** for Ultra-lightweight Solar Arrays and Array Antennas by 3U CubeSat OrigamiSat-1

Hiraku Sakamoto, H. Furuya, H. Nakanishi Tokyo Institute of Technology, Japan

A. Watanabe, N. Kawabata, T. Hori, H. Ito X Sakase Adtech, Co., Ltd., Japan

T. Kuratomi, Y. Shimoda, N. Hidaka, and K. Watanabe WEL Research, Co., Ltd., Japan WEI

SSC21-VIII-06

35th Annual Small Satellite Conference, Aug. 7-21, 2021 Advanced Technologies 2

On-orbit Demonstration of Innovative <u>Multifunctional Membrane Structure</u> for Ultra-lightweight Solar Arrays and Array Antennas by 3U CubeSat **OrigamiSat-1**

Applications of multifunctional membrane

Further mass efficient solar arrays

ROSA (NASA) ~120 W/kg

UltraFlex (Northrop Grumman)

150 W/kg

TMSAP (JAXA) 150W/kg

Membrane arrays will achieve over 200W/kg

Array Antennas (Active patch / Reflectarray)

ICEYE-X1

70kg satellite ~1.6m²

©ICEYE

MarCO (NASA JPL) 13kg satellite, ~0.2m²

©NASA

OMERA (NASA JPL) 6U CubeSat, ~1m²

(Sauder, et al., 2019)

2) Reliable deployment only using small actuators.

Deep Space Solar Sail Demonstrator IKAROS (2010)

2) Reliable deployment only using small actuators.

[Mission 1] Deployment of multi-functional membrane EM model

75µm-thick Polyimide film (Dummy for thin-film solar cells etc.)

1. Plain-woven textile

100mm

Flipped

[Mission 1] Deployment of multi-functional membrane EM model

100mm

Flipped

Ground deployment test with extendable mast

Four membrane corners (four membrane boom tips) are suspended from ceiling

(Apr. 2017, at Hiroshi Furuya Lab, Tokyo Tech)

Ref: Folding pattern demonstration using Origami (Flasher pattern)

Deployment test under microgravity (x0.7 scale model)

 Objective: Observe deployment behavior of OrigamiSat-1's membrane under microgravity

In January 2016, deployed inside aircraft MU-300.

Not deployed completely, due to stress-relaxation of CFRP. -> CFRP boom's deployment force has been increased.

[Mission 1] Deployment of multi-functional membrane EM model

[Mission 1] Deployment of multi-functional membrane FM model

82µm-thick Polyester plain-woven fabric

50µm-thick Superio-UT film
(Dummy for thin-film solar cells etc.)

- Transparent film is used to reduce the shadowing effect on the satellite bus.

- Following actual devices are attached: CIGS thin-film solar cells, On-membrane SMA antenna, Sphere solar cells.

Retro-reflective markers are attached throughout the membrane for shape and deployment motion measurement

Flipped

4.1 kg **1**m Designed for 3 missions. Deployable membrane unit UHF/VHF deployable antennas Deployment detection pins Extendable **CIGS** thin-film camera unit: solar cells etc Bus Extensible mast + **Deployed configuration** 5 cameras

3U CubeSat OrigamiSat-1 / FO-98

X: 100 × Y: 100 × Z: 340.5 mm

[Mission 2] On-orbit measurement of deployable structures using cameras

- ✓ Measurement of
 - 1. Deployment dynamics
 - 2. Deployed shape

Photos

Movie shooting during membrane deployment

✓ 320x240, 80fps movie

Movie camera

Estimation of out-of-plane shape by stereo vision

✓ 100mm deformation is successfully detected

Extendable camera unit: Launch lock mechanism and Mast extension mechanism

Bottom part of membrane deployment unit

Extendable camera unit

Membrane deployment unit is hidden

OrigamiSat-1 mission sequence and launch result

OrigamiSat-1 mission sequence and launch result

OrigamiSat-1 mission sequence and launch result

Detachment mechanism for extendable mast

[Mission 3] Amateur radio communication

(1) Use of VHF/UHF-band: Command and telemetry
✓ Collaboration with amateur radio operators' community.

(2) Use of 5.84GHz: Mission data downlink

✓ Aims at training of new satellite communication system developed by FITSAT-1 (Niwaka) developed by Fukukoka Institute of Technology (Released from ISS in 2012).

Satellite's call sign: JS1YAX

OrigamiSat-1 development team

Principal Investigator Project Manager Student Project Manager H. Sakamoto (Associate Professor, Tokyo Tech)

- H. Nakanishi (Associate Professor, Tokyo Tech)
- K. Ikeya (Graduate student, Tokyo Tech)

HELIOS mission, to be launched in 2022

IKAROS (JAXA), 2010

OrigamiSat-1 (Tokyo Tech), 2019-present

Summary

OrigamiSat-1 (Tokyo Tech), 2019-present

- The major significance of the structural concept is that it allows the attachment of film devices throughout the membrane.
- This was achieved by two features: (i) use of textile and (ii) invention of hybrid boom made of tubular carbon composite and metal convex tapes.
- In addition, a visual membrane measurement system consisting of stereo cameras and an extendible mast was developed.

OrigamiSat-1 Papers

Journal Paper

- K. Ikeya, et al., "Significance of 3U CubeSat OrigamiSat-1 for space demonstration of multifunctional deployable membrane," Acta Astronautica, Vol. 173, 2020, pp. 363-377, https://doi.org/10.1016/j.actaastro.2020.04.016.
- A. Torisaka, et al., "Development of shape monitoring system using SMA dipole antenna on a deployable membrane structure," Acta Astronautica, Vol. 160, Jul. 2019, pp. 147–154.

Conference Paper

- H. Sakamoto, et al., "CubeSat Design for Space Demonstration of Deployable Membrane Structure Technologies," 2015-f-74, 34th International Symposium on Space Technology and Science (ISTS), Hyogo, Japan, July 4-10, 2015.
- Y. Shimoda, et al., "Development of Stereo Camera System for Accurate Observation of Large Deployable Membranes in Orbit," AIAA-2016-1473, 3rd AIAA Spacecraft Structures Conference, SciTech2016, San Diego, California, USA, Jan. 4-8, 2016.
- H. Furuya, et al., "Deployment Properties with Gravity Compensation Devices for Boom-Membrane Integrated Wrapped Structures," AIAA-2016-2167, 3rd AIAA Spacecraft Structures Conference, SciTech2016, San Diego, California, USA, Jan. 4-8, 2016.
- Y. Shimoda, et al., "Development of Stereo Camera System for Accurate Observation of Deployable Membranes Onboard CubeSat," AIAA-2017-0167, SciTech2017, Grapevine, Texas, USA, Jan. 9-13, 2017.
- H. Furuya, et al., "Micro-gravity Testing of Boom-Membrane Integrated Deployable Structures for Micro-satellites", AIAA-2017-0618, 4th AIAA Spacecraft Structures Conference, SciTech2017, Grapevine, Texas, USA, Jan. 9-13, 2017.

- H. Furuya, et al., "Boom/Membrane Integrated Deployable Space Structures for Small Satellites," 4th International Symposium on Solar Sailing, Kyoto, Japan, pp.1-4, Jan.17-20, 2017.
- H. Nakanishi, et al., "Development of Nano-Satellite OrigamiSat-1 with Highly Functional Deployable Membrane," 4th International Symposium on Solar Sailing, Kyoto, Japan, pp.1-4, Jan.17-20, 2017.
- T. Chubachi, et al., "Hybrid Self-deployable Tubular CFRP Booms for Deployable Membrane," 4th International Symposium on Solar Sailing, Kyoto, Japan, pp.1-7, Jan.17-20, 2017.
- H. Sakamoto, et al., "Development of CubeSat OrigamiSat-1 for Space Demonstration of Deployable Membrane Structure Technologies," No. 2017-f-023, 31st International Symposium on Space Technology and Science, Jun. 3-9, 2017.
- T. Chubachi, et al., "Undesired Equilibrium Configurations of Boom-Membrane Integrated Structure during Deploying Motion," AIAA-2018-0695, AIAA Spacecraft Structures Conference, SciTech2018, Kissimmee, Florida, USA, Jan. 8-12, 2018.
- T. Amamoto, et al., "Modeling of Composite Booms' Deployment Dynamics under Microgravity Based on Ground Tests," AIAA-2018-1435, AIAA Spacecraft Structures Conference, SciTech2018, Kissimmee, Florida, USA, Jan. 8-12, 2018.
- T. Chubachi, et al., "Deployability of Boom-Membrane Integrated Structure on OrigamiSat-1," No. 2019-k-41, 32nd International Symposium on Space Technology and Science (ISTS), Fukui, Fukui, Japan, June 15-21, 2019.
- S. Kadonishi, et al., "Compact Packaging of Planar Gossamer Space Structures Using Textile Membranes," No. 2019-k-42, 32nd International Symposium on Space Technology and Science, Fukui, Japan, Jun. 15-21, 2019.

Presenter: Hiraku SAKAMOTO, Ph.D. sakamoto.h.aa@m.titech.ac.jp https://www.linkedin.com/in/hiraku-sakamoto/

