1,990 research outputs found

    The interplay between nutrition and body composition

    Get PDF
    No Abstrac

    Investigating the Structure of Paramagnetic Aggregates from Colloidal Emulsions - 2

    Get PDF
    Particle dynamics of magnetorheological fluids (fluids that change properties in response to magnetic fields) are studied to help understand adaptable new fluids for use in such applications as brake systems and robotics

    Colloidal diffusion and hydrodynamic screening near boundaries

    Get PDF
    The hydrodynamic interactions between colloidal particles in small ensembles are measured at varying distances from a no-slip surface over a range of inter-particle separations. The diffusion tensor for motion parallel to the wall of each ensemble is calculated by analyzing thousands of particle trajectories generated by blinking holographic optical tweezers and by dynamic simulation. The Stokesian Dynamics simulations predict similar particle dynamics. By separating the dynamics into three classes of modes: self, relative and collective diffusion, we observe qualitatively different behavior depending on the relative magnitudes of the distance of the ensemble from the wall and the inter-particle separation. A simple picture of the pair-hydrodynamic interactions is developed, while many-body-hydrodynamic interactions give rise to more complicated behavior. The results demonstrate that the effect of many-body hydrodynamic interactions in the presence of a wall is much richer than the single particle behavior and that the multiple-particle behavior cannot be simply predicted by a superposition of pair interactions

    Short Duplication in a cDNA Clone of the rbcL Gene from Picea abies

    Full text link

    On Algorithmic Statistics for space-bounded algorithms

    Full text link
    Algorithmic statistics studies explanations of observed data that are good in the algorithmic sense: an explanation should be simple i.e. should have small Kolmogorov complexity and capture all the algorithmically discoverable regularities in the data. However this idea can not be used in practice because Kolmogorov complexity is not computable. In this paper we develop algorithmic statistics using space-bounded Kolmogorov complexity. We prove an analogue of one of the main result of `classic' algorithmic statistics (about the connection between optimality and randomness deficiences). The main tool of our proof is the Nisan-Wigderson generator.Comment: accepted to CSR 2017 conferenc

    High resolution radio imaging of the two Particle-Accelerating Colliding-Wind Binaries HD167971 and HD168112

    Full text link
    The colliding-wind region in binary systems made of massive stars allows us to investigate various aspects of shock physics, including particle acceleration. Particle accelerators of this kind are tagged as Particle-Accelerating Colliding-Wind Binaries, and are mainly identified thanks to their synchrotron radio emission. Our objective is first to validate the idea that obtaining snapshot high-resolution radio images of massive binaries constitutes a relevant approach to unambiguously identify particle accelerators. Second, we intend to exploit these images to characterize the synchrotron emission of two specific targets, HD167971 and HD168112, known as particle accelerators. We traced the radio emission from the two targets at 1.6 GHz with the European Very Long Baseline Interferometry Network, with an angular resolution of a few milli-arcseconds. Our measurements allowed us to obtain images for both targets. For HD167971, our observation occurs close to apastron, at an orbital phase where the synchrotron emission is minimum. For HD168112, we resolved for the very first time the synchrotron emission region. The emission region appears slightly elongated, in agreement with expectation for a colliding-wind region. In both cases the measured emission is significantly stronger than the expected thermal emission from the stellar winds, lending strong support for a non-thermal nature. Our study brings a significant contribution to the still poorly addressed question of high angular resolution radio imaging of colliding-wind binaries. We show that snapshot Very Long Baseline Interferometry measurements constitute an efficient approach to investigate these objects, with promising results in terms of identification of additional particle accelerators, on top of being promising as well to reveal long period binaries.Comment: 8 pages, 1 figure, accepted for publication in A&

    An upper limit on anomalous dust emission at 31 GHz in the diffuse cloud [LPH96]201.663+1.643

    Full text link
    [LPH96]201.663+1.643, a diffuse H{\sc ii} region, has been reported to be a candidate for emission from rapidly spinning dust grains. Here we present Cosmic Background Imager (CBI) observations at 26-36 GHz that show no evidence for significant anomalous emission. The spectral index within the CBI band, and between CBI and Effelsberg data at 1.4/2.7 GHz, is consistent with optically thin free-free emission. The best-fitting temperature spectral index from 2.7 to 31 GHz, β=−2.06±0.03\beta=-2.06 \pm 0.03, is close to the theoretical value, β=−2.12\beta=-2.12 for Te=9100T_{e}=9100 K. We place an upper limit of 24% ~ (2\sigma) for excess emission at 31 GHz as seen in a 6\arcmin FWHM beam. Current spinning dust models are not a good fit to the spectrum of LPH96. No polarized emission is detected in the CBI data with an upper limit of 2% on the polarization fraction.Comment: 5 pages, 3 figures, submitted to ApJ

    On the Enhanced Interstellar Scattering Toward B1849+005

    Full text link
    (Abridged) This paper reports new Very Large Array (VLA) and Very Long Baseline Array (VLBA) observations of the extragalactic source B1849+005 at frequencies between 0.33 and 15 GHz and the re-analysis of archival VLA observations at 0.33, 1.5, and 4.9 GHz. The structure of this source is complex but interstellar scattering dominates the structure of the central component at least to 15 GHz. An analysis of the phase structure functions of the interferometric visibilities shows the density fluctuations along this line of sight to be anisotropic (axial ratio = 1.3) with a frequency-independent position angle, and having an inner scale of roughly a few hundred kilometers. The anisotropies occur on length scales of order 10^{15} cm (D/5 kpc), which within the context of certain magnetohydrodynamic turbulence theories indicates the length scale on which the kinetic and magnetic energy densities are comparable. A conservative upper limit on the velocity of the scattering material is 1800 km/s. In the 0.33 GHz field of view, there are a number of other sources that might also be heavily scattered. Both B1849+005 and PSR B1849+00 are highly scattered, and they are separated by only 13'. If the lines of sight are affected by the same ``clump'' of scattering material, it must be at least 2.3 kpc distant. However, a detailed attempt to account for the scattering observables toward these sources does not produce a self-consistent set of parameters for such a clump. A clump of H\alpha emission, possibly associated with the H II region G33.418-0.004, lies between these two lines of sight, but it seems unable to account for all of the required excess scattering.Comment: 23 pages, LaTeX2e AASTeX, 13 figures in 14 PostScript files, accepted for publication in Ap
    • …
    corecore