27 research outputs found
Exploring Citizen Psych-Science and the Motivations of Errordiary Volunteers
Although virtual citizen science projects have the potential to engage large networks of people in science research, seeding and maintaining such networks can be difficult. A feature of successful projects is that they have well-motivated volunteers. What makes volunteers motivated rather than apathetic? In this paper we focus on projects that contribute to psychology research, which we term ‘citizen psych-science’. This differs from typical citizen science because volunteers are asked to contribute themselves as data. We describe research studies that we conducted with Errordiary — a citizen psych-science project where volunteers tweet about their everyday experiences of human error. These studies were: (1) an interview study, to explore the motivations of eight Errordiary volunteers; and (2) three focus groups, to explore the potential of attracting new communities to Errordiary. We found that the personal nature of the data can influence participation in positive and negative ways. We suggest several factors that scientists need to consider when encouraging citizen psych-science volunteers to contribute their personal experiences towards research
MOODs: Building massive open online diaries for researchers, teachers and contributors
Internet-based research conducted in partnership with paid crowdworkers and volunteer citizen scientists is an increasingly common method for collecting data from large, diverse populations. We wanted to leverage web-based citizen science to gain insights into phenomena that are part of people’s everyday lives. To do this, we developed the concept of a Massive Open Online Diary (MOOD). A MOOD is a tool for capturing, storing and presenting short updates from multiple contributors on a particular topic. These updates are aggregated into public corpora that can be viewed, analysed and shared. MOODs offer a novel method for crowdsourcing diary-like data in a way that provides value for researchers, teachers and contributors. MOODs also come with unique community-building and ethical challenges. We describe the benefits and challenges of MOODs in relation to Errordiary.org, a MOOD we created to aid our exploration of human error
Recursive partitioning vs computerized adaptive testing to reduce the burden of health assessments in cleft lip and/or palate : comparative simulation study
Background:
Computerized adaptive testing (CAT) has been shown to deliver short, accurate, and personalized versions of the CLEFT-Q patient-reported outcome measure for children and young adults born with a cleft lip and/or palate. Decision trees may integrate clinician-reported data (eg, age, gender, cleft type, and planned treatments) to make these assessments even shorter and more accurate.
Objective:
We aimed to create decision tree models incorporating clinician-reported data into adaptive CLEFT-Q assessments and compare their accuracy to traditional CAT models.
Methods:
We used relevant clinician-reported data and patient-reported item responses from the CLEFT-Q field test to train and test decision tree models using recursive partitioning. We compared the prediction accuracy of decision trees to CAT assessments of similar length. Participant scores from the full-length questionnaire were used as ground truth. Accuracy was assessed through Pearson’s correlation coefficient of predicted and ground truth scores, mean absolute error, root mean squared error, and a two-tailed Wilcoxon signed-rank test comparing squared error.
Results:
Decision trees demonstrated poorer accuracy than CAT comparators and generally made data splits based on item responses rather than clinician-reported data.
Conclusions:
When predicting CLEFT-Q scores, individual item responses are generally more informative than clinician-reported data. Decision trees that make binary splits are at risk of underfitting polytomous patient-reported outcome measure data and demonstrated poorer performance than CATs in this study
Learning Contextual Inquiry and Distributed Cognition: a case study on technology use in anaesthesia
There have been few studies on how analysts learn or use frameworks to support gathering and analysis of field data. Distributed Cognition for Teamwork (DiCoT) is a framework that has been developed to facilitate the learning of Distributed Cognition (DCog), focusing on analysing small team interactions. DiCoT, in turn, exploits representations from Contextual Inquiry (CI). The present study is a reflective account of the experience of learning first CI and then DiCoT for studying the use of infusion devices in operating theatres. We report on how each framework supported a novice analyst (the first author) in structuring his data gathering and analysis, and the challenges that he faced. There are three contributions of this work: (1) an example of learning CI and DCog in a semi-structured way; (2) an account of the process and outcomes of learning and using CI and DiCoT in a complex setting; and (3) an outline account of information flow in anaesthesia. While CI was easier to learn and consequently gave better initial support to the novice analyst entering a complex work setting, DiCoT gave added value through its focus on information propagation and transformation as well as the roles of people and artefacts in supporting communication and situation awareness. This study makes visible many of the challenges of learning to apply a framework that are commonly encountered but rarely reported
Molecular and cellular correlates of human nerve regeneration: ADCYAP1/PACAP enhance nerve outgrowth
We only have a rudimentary understanding of the molecular and cellular determinants of nerve regeneration and neuropathic pain in humans. This cohort study uses the most common entrapment neuropathy (carpal tunnel syndrome) as a human model system to prospectively evaluate the cellular and molecular correlates of neural regeneration and its relationship with clinical recovery. In 60 patients undergoing carpal tunnel surgery [36 female, mean age 62.5 (standard deviation 12.2) years], we used quantitative sensory testing and nerve conduction studies to evaluate the function of large and small fibres before and 6 months after surgery. Clinical recovery was assessed with the global rating of change scale and Boston Carpal Tunnel Questionnaire. Twenty healthy participants provided normative data [14 female, mean age 58.0 (standard deviation 12.9) years]. At 6 months post-surgery, we noted significant recovery of median nerve neurophysiological parameters (P < 0.0001) and improvements in quantitative sensory testing measures of both small and large nerve fibre function (P < 0.002). Serial biopsies revealed a partial recovery of intraepidermal nerve fibre density [fibres/mm epidermis pre: 4.20 (2.83), post: 5.35 (3.34), P = 0.001], whose extent correlated with symptom improvement (r = 0.389, P = 0.001). In myelinated afferents, nodal length increased postoperatively [pre: 2.03 (0.82), post: 3.03 (1.23), P < 0.0001] suggesting that this is an adaptive phenomenon. Transcriptional profiling of the skin revealed 31 differentially expressed genes following decompression, with ADCYAP1 (encoding pituitary adenylate cyclase activating peptide, PACAP) being the most strongly upregulated (log2 fold-change 1.87, P = 0.0001) and its expression was associated with recovery of intraepidermal nerve fibres. We found that human induced pluripotent stem cell-derived sensory neurons expressed the receptor for PACAP and that this peptide could significantly enhance axon outgrowth in a dose-dependent manner in vitro [neurite length PACAP 1065.0 µm (285.5), vehicle 570.9 μm (181.8), P = 0.003]. In conclusion, carpal tunnel release is associated with significant cutaneous reinnervation, which correlates with the degree of functional improvement and is associated with a transcriptional programme relating to morphogenesis and inflammatory processes. The most highly dysregulated gene ADCYAP1 (encoding PACAP) was associated with reinnervation and, given that this peptide signals through G-protein coupled receptors, this signalling pathway provides an interesting therapeutic target for human sensory nerve regeneration
Quantitative assessment of barriers to the clinical development and adoption of cellular therapies:A pilot study
There has been a large increase in basic science activity in cell therapy and a growing portfolio of cell therapy trials. However, the number of industry products available for widespread clinical use does not match this magnitude of activity. We hypothesize that the paucity of engagement with the clinical community is a key contributor to the lack of commercially successful cell therapy products. To investigate this, we launched a pilot study to survey clinicians from five specialities and to determine what they believe to be the most significant barriers to cellular therapy clinical development and adoption. Our study shows that the main concerns among this group are cost-effectiveness, efficacy, reimbursement, and regulation. Addressing these concerns can best be achieved by ensuring that future clinical trials are conducted to adequately answer the questions of both regulators and the broader clinical community
Strategies for conducting situated studies of technology use in hospitals
Ethnographic methods are widely used for understanding situated practices with technology. When authors present their data gathering methods, they almost invariably focus on the bare essentials. These enable the reader to comprehend what was done, but leave the impression that setting up and conducting the study was straightforward. Text books present generic advice, but rarely focus on specific study contexts. In this paper, we focus on lessons learnt by non-clinical researchers studying technology use in hospitals: gaining access; developing good relations with clinicians and patients; being outsiders in healthcare settings; and managing the cultural divide between technology human factors and clinical practice. Drawing on case studies across various hospital settings, we present a repertoire of ways of working with people and technologies in these settings. These include engaging clinicians and patients effectively, taking an iterative approach to data gathering and being responsive to the demands and opportunities provided by the situation. The main contribution of this paper is to make visible many of the lessons we have learnt in conducting technology studies in healthcare, using these lessons to present strategies that other researchers can take up
A single cell atlas of frozen shoulder capsule identifies features associated with inflammatory fibrosis resolution
Frozen shoulder is a spontaneously self-resolving chronic inflammatory fibrotic human disease, which distinguishes the condition from most fibrotic diseases that are progressive and irreversible. Using single-cell analysis, we identify pro-inflammatory MERTKlowCD48+ macrophages and MERTK + LYVE1 + MRC1+ macrophages enriched for negative regulators of inflammation which co-exist in frozen shoulder capsule tissues. Micro-cultures of patient-derived cells identify integrin-mediated cell-matrix interactions between MERTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts, suggesting that matrix remodelling plays a role in frozen shoulder resolution. Cross-tissue analysis reveals a shared gene expression cassette between shoulder capsule MERTK+ macrophages and a respective population enriched in synovial tissues of rheumatoid arthritis patients in disease remission, supporting the concept that MERTK+ macrophages mediate resolution of inflammation and fibrosis. Single-cell transcriptomic profiling and spatial analysis of human foetal shoulder tissues identify MERTK + LYVE1 + MRC1+ macrophages and DKK3+ and POSTN+ fibroblast populations analogous to those in frozen shoulder, suggesting that the template to resolve fibrosis is established during shoulder development. Crosstalk between MerTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts could facilitate resolution of frozen shoulder, providing a basis for potential therapeutic resolution of persistent fibrotic diseases
A single cell atlas of frozen shoulder capsule identifies features associated with inflammatory fibrosis resolution
Frozen shoulder is a spontaneously self-resolving chronic inflammatory fibrotic human disease, which distinguishes the condition from most fibrotic diseases that are progressive and irreversible. Using single-cell analysis, we identify pro-inflammatory MERTKlowCD48+ macrophages and MERTK + LYVE1 + MRC1+ macrophages enriched for negative regulators of inflammation which co-exist in frozen shoulder capsule tissues. Micro-cultures of patient-derived cells identify integrin-mediated cell-matrix interactions between MERTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts, suggesting that matrix remodelling plays a role in frozen shoulder resolution. Cross-tissue analysis reveals a shared gene expression cassette between shoulder capsule MERTK+ macrophages and a respective population enriched in synovial tissues of rheumatoid arthritis patients in disease remission, supporting the concept that MERTK+ macrophages mediate resolution of inflammation and fibrosis. Single-cell transcriptomic profiling and spatial analysis of human foetal shoulder tissues identify MERTK + LYVE1 + MRC1+ macrophages and DKK3+ and POSTN+ fibroblast populations analogous to those in frozen shoulder, suggesting that the template to resolve fibrosis is established during shoulder development. Crosstalk between MerTK+ macrophages and pro-resolving DKK3+ and POSTN+ fibroblasts could facilitate resolution of frozen shoulder, providing a basis for potential therapeutic resolution of persistent fibrotic diseases