8 research outputs found

    Update on Cardiac Catheterization in Patients With Prior Coronary Artery Bypass Graft Surgery

    No full text
    Patients who undergo coronary bypass graft surgery often require subsequent cardiac catheterization and repeat coronary revascularization. Saphenous vein graft lesions have high rates for distal embolization that can be reduced with use of embolic protection devices. They also have high restenosis rates, which are similar with drug-eluting and bare-metal stents. Percutaneous coronary interventions of native coronary arteries is generally preferred over saphenous vein graft interventions, but can often be complex, requiring expertise and specialized equipment. Prolonged dual-antiplatelet therapy and close monitoring can help optimize subsequent clinical outcomes

    Guiding Principles for Chronic Total Occlusion Percutaneous Coronary Intervention.

    No full text
    Outcomes of chronic total occlusion (CTO) percutaneous coronary intervention (PCI) have improved because of advancements in equipment and techniques. With global collaboration and knowledge sharing, we have identified 7 common principles that are widely accepted as best practices for CTO-PCI.  1. Ischemic symptom improvement is the primary indication for CTO-PCI.  2. Dual coronary angiography and in-depth and structured review of the angiogram (and, if available, coronary computed tomography angiography) are key for planning and safely performing CTO-PCI.  3. Use of a microcatheter is essential for optimal guidewire manipulation and exchanges.  4. Antegrade wiring, antegrade dissection and reentry, and the retrograde approach are all complementary and necessary crossing strategies. Antegrade wiring is the most common initial technique, whereas retrograde and antegrade dissection and reentry are often required for more complex CTOs.  5. If the initially selected crossing strategy fails, efficient change to an alternative crossing technique increases the likelihood of eventual PCI success, shortens procedure time, and lowers radiation and contrast use.  6. Specific CTO-PCI expertise and volume and the availability of specialized equipment will increase the likelihood of crossing success and facilitate prevention and management of complications, such as perforation.  7. Meticulous attention to lesion preparation and stenting technique, often requiring intracoronary imaging, is required to ensure optimum stent expansion and minimize the risk of short- and long-term adverse events. These principles have been widely adopted by experienced CTO-PCI operators and centers currently achieving high success and acceptable complication rates. Outcomes are less optimal at less experienced centers, highlighting the need for broader adoption of the aforementioned 7 guiding principles along with the development of additional simple and safe CTO crossing and revascularization strategies through ongoing research, education, and training

    Global Chronic Total Occlusion Crossing Algorithm: JACC State-of-the-Art Review

    No full text
    The authors developed a global chronic total occlusion crossing algorithm following 10 steps: 1) dual angiography; 2) careful angiographic review focusing on proximal cap morphology, occlusion segment, distal vessel quality, and collateral circulation; 3) approaching proximal cap ambiguity using intravascular ultrasound, retrograde, and move-the-cap techniques; 4) approaching poor distal vessel quality using the retrograde approach and bifurcation at the distal cap by use of a dual-lumen catheter and intravascular ultrasound; 5) feasibility of retrograde crossing through grafts and septal and epicardial collateral vessels; 6) antegrade wiring strategies; 7) retrograde approach; 8) changing strategy when failing to achieve progress; 9) considering performing an investment procedure if crossing attempts fail; and 10) stopping when reaching high radiation or contrast dose or in case of long procedural time, occurrence of a serious complication, operator and patient fatigue, or lack of expertise or equipment. This algorithm can improve outcomes and expand discussion, research, and collaboration

    Global chronic total occlusion crossing algorithm: JACC state-of-the-art review

    Get PDF
    The authors developed a global chronic total occlusion crossing algorithm following 10 steps: 1) dual angiography; 2) careful angiographic review focusing on proximal cap morphology, occlusion segment, distal vessel quality, and collateral circulation; 3) approaching proximal cap ambiguity using intravascular ultrasound, retrograde, and move-the-cap techniques; 4) approaching poor distal vessel quality using the retrograde approach and bifurcation at the distal cap by use of a dual-lumen catheter and intravascular ultrasound; 5) feasibility of retrograde crossing through grafts and septal and epicardial collateral vessels; 6) antegrade wiring strategies; 7) retrograde approach; 8) changing strategy when failing to achieve progress; 9) considering performing an investment procedure if crossing attempts fail; and 10) stopping when reaching high radiation or contrast dose or in case of long procedural time, occurrence of a serious complication, operator and patient fatigue, or lack of expertise or equipment. This algorithm can improve outcomes and expand discussion, research, and collaboration

    Ticagrelor in patients with diabetes and stable coronary artery disease with a history of previous percutaneous coronary intervention (THEMIS-PCI) : a phase 3, placebo-controlled, randomised trial

    No full text
    Background: Patients with stable coronary artery disease and diabetes with previous percutaneous coronary intervention (PCI), particularly those with previous stenting, are at high risk of ischaemic events. These patients are generally treated with aspirin. In this trial, we aimed to investigate if these patients would benefit from treatment with aspirin plus ticagrelor. Methods: The Effect of Ticagrelor on Health Outcomes in diabEtes Mellitus patients Intervention Study (THEMIS) was a phase 3 randomised, double-blinded, placebo-controlled trial, done in 1315 sites in 42 countries. Patients were eligible if 50 years or older, with type 2 diabetes, receiving anti-hyperglycaemic drugs for at least 6 months, with stable coronary artery disease, and one of three other mutually non-exclusive criteria: a history of previous PCI or of coronary artery bypass grafting, or documentation of angiographic stenosis of 50% or more in at least one coronary artery. Eligible patients were randomly assigned (1:1) to either ticagrelor or placebo, by use of an interactive voice-response or web-response system. The THEMIS-PCI trial comprised a prespecified subgroup of patients with previous PCI. The primary efficacy outcome was a composite of cardiovascular death, myocardial infarction, or stroke (measured in the intention-to-treat population). Findings: Between Feb 17, 2014, and May 24, 2016, 11 154 patients (58% of the overall THEMIS trial) with a history of previous PCI were enrolled in the THEMIS-PCI trial. Median follow-up was 3·3 years (IQR 2·8–3·8). In the previous PCI group, fewer patients receiving ticagrelor had a primary efficacy outcome event than in the placebo group (404 [7·3%] of 5558 vs 480 [8·6%] of 5596; HR 0·85 [95% CI 0·74–0·97], p=0·013). The same effect was not observed in patients without PCI (p=0·76, p interaction=0·16). The proportion of patients with cardiovascular death was similar in both treatment groups (174 [3·1%] with ticagrelor vs 183 (3·3%) with placebo; HR 0·96 [95% CI 0·78–1·18], p=0·68), as well as all-cause death (282 [5·1%] vs 323 [5·8%]; 0·88 [0·75–1·03], p=0·11). TIMI major bleeding occurred in 111 (2·0%) of 5536 patients receiving ticagrelor and 62 (1·1%) of 5564 patients receiving placebo (HR 2·03 [95% CI 1·48–2·76], p<0·0001), and fatal bleeding in 6 (0·1%) of 5536 patients with ticagrelor and 6 (0·1%) of 5564 with placebo (1·13 [0·36–3·50], p=0·83). Intracranial haemorrhage occurred in 33 (0·6%) and 31 (0·6%) patients (1·21 [0·74–1·97], p=0·45). Ticagrelor improved net clinical benefit: 519/5558 (9·3%) versus 617/5596 (11·0%), HR=0·85, 95% CI 0·75–0·95, p=0·005, in contrast to patients without PCI where it did not, p interaction=0·012. Benefit was present irrespective of time from most recent PCI. Interpretation: In patients with diabetes, stable coronary artery disease, and previous PCI, ticagrelor added to aspirin reduced cardiovascular death, myocardial infarction, and stroke, although with increased major bleeding. In that large, easily identified population, ticagrelor provided a favourable net clinical benefit (more than in patients without history of PCI). This effect shows that long-term therapy with ticagrelor in addition to aspirin should be considered in patients with diabetes and a history of PCI who have tolerated antiplatelet therapy, have high ischaemic risk, and low bleeding risk
    corecore