53 research outputs found

    Investigation of Axial and Angular Sampling in Multi-Detector Pinhole-SPECT Brain Imaging

    Get PDF
    We designed a dedicated multi-detector multi-pinhole brain SPECT scanner to generate images of higher quality compared to general-purpose systems. The system, AdaptiSPECT-C, is intended to adapt its sensitivity-resolution trade-off by varying its aperture configurations allowing both high-sensitivity dynamic and high-spatial-resolution static imaging. The current system design consists of 23 detector heads arranged in a truncated spherical geometry. In this work, we investigated the axial and angular sampling capability of the current stationary system design. Two data acquisition schemes using limited rotation of the gantry and two others using axial translation of the imaging bed were also evaluated concerning their impact on image quality through improved sampling. Increasing both angular and axial sampling in the current prototype system resulted in quantitative improvements in image quality metrics and qualitative appearance of the images as determined in studies with specifically selected phantoms. Visual improvements for the brain phantoms with clinical distributions were less pronounced but presented quantitative improvements in the fidelity (normalized root-mean-square error (NRMSE)) and striatal specific binding ratio (SBR) for a dopamine transporter (DAT) distribution, and in NRMSE and activity recovery for a brain perfusion distribution. More pronounced improvements with increased sampling were seen in contrast recovery coefficient, bias, and coefficient of variation for a lesion in the brain perfusion distribution. The negligible impact of the most cranial ring of detectors on axial sampling, but its significant impact on sensitivity and angular sampling in the cranial portion of the imaging volume-of-interest were also determined

    A Novel Metal-Based Imaging Probe for Targeted Dual-Modality SPECT/MR Imaging of Angiogenesis

    Get PDF
    Superparamagnetic iron oxide nanoparticles with well-integrated multimodality imaging properties have generated increasing research interest in the past decade, especially when it comes to the targeted imaging of tumors. Bevacizumab (BCZM) on the other hand is a well-known and widely applied monoclonal antibody recognizing VEGF-A, which is overexpressed in angiogenesis. The aim of this proof-of-concept study was to develop a dual-modality nanoplatform for in vivo targeted single photon computed emission tomography (SPECT) and magnetic resonance imaging (MRI) of tumor vascularization. Iron oxide nanoparticles (IONPs) have been coated with dimercaptosuccinic acid (DMSA), for consequent functionalization with the monoclonal antibody BCZM radiolabeled with 99mTc, via well-developed surface engineering. The IONPs were characterized based on their size distribution, hydrodynamic diameter and magnetic properties. In vitro cytotoxicity studies showed that our nanoconstruct does not cause toxic effects in normal and cancer cells. Fe3O4-DMSA-SMCC-BCZM-99mTc were successfully prepared at high radiochemical purity (>92%) and their stability in human serum and in PBS were demonstrated. In vitro cell binding studies showed the ability of the Fe3O4-DMSA-SMCC-BCZM-99mTc to bind to the VEGF-165 isoform overexpressed on M-165 tumor cells. The ex vivo biodistribution studies in M165 tumor-bearing SCID mice showed high uptake in liver, spleen, kidney and lungs. The Fe3O4-DMSA-SMCC-BCZM-99mTc demonstrated quick tumor accumulation starting at 8.9 ± 1.88%ID/g at 2 h p.i., slightly increasing at 4 h p.i. (16.21 ± 2.56%ID/g) and then decreasing at 24 h p.i. (6.01 ± 1.69%ID/g). The tumor-to-blood ratio reached a maximum at 24 h p.i. (~7), which is also the case for the tumor-to-muscle ratio (~18). Initial pilot imaging studies on an experimental gamma-camera and a clinical MR camera prove our hypothesis and demonstrate the potential of Fe3O4-DMSA-SMCC-BCZM-99mTc for targeted dual-modality imaging. Our findings indicate that Fe3O4-DMSA-SMCC-BCZM-99mTc IONPs could serve as an important diagnostic tool for biomedical imaging as well as a promising candidate for future theranostic applications in cancer

    Inclusion of quasi-vertex views in a brain-dedicated multi-pinhole SPECT system for improved imaging performance

    Get PDF
    With brain-dedicated multi-detector systems employing pinhole apertures the usage of detectors facing the top of the patient\u27s head (i.e., quasi-vertex views) can provide the advantage of additional viewing from close to the brain for improved detector coverage. In this paper, we report the results of simulation and reconstruction studies to investigate the impact of the quasi-vertex views on the imaging performance of AdaptiSPECT-C, a brain-dedicated stationary SPECT system under development. In this design, both primary and scatter photons from regions located inferior to the brain can contribute to SPECT projections acquired by the quasi-vertex views, and thus degrade AdaptiSPECT-C imaging performance. In this work, we determined the proportion, origin, and nature (i.e., primary, scatter, and multiple-scatter) of counts emitted from structures within the head and throughout the body contributing to projections from the different AdaptiSPECT-C detector rings, as well as from a true vertex view detector. We simulated phantoms used to assess different aspects of image quality (i.e., uniform sphere and Derenzo), as well as anthropomorphic phantoms with multiple count levels emulating clinical(123)I activity distributions (i.e., DaTscan and perfusion). We determined that attenuation and scatter in the patient\u27s body greatly diminish the probability of the photons emitted outside the volume of interest reaching to detectors and being recorded within the 15% photopeak energy window. In addition, we demonstrated that the inclusion of the residual of such counts in the system acquisition does not degrade visual interpretation or quantitative analysis. The addition of the quasi-vertex detectors increases volumetric sensitivity, angular sampling, and spatial resolution leading to significant enhancement in image quality, especially in the striato-thalamic and superior regions of the brain. Besides, the use of quasi-vertex detectors improves the recovery of clinically relevant metrics such as the striatal binding ratio and mean activity in selected cerebral structures

    On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    Get PDF
    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012

    Direct XANES Evidence for Charge Transfer in Co−CO 2

    No full text

    High-Resolution Anamorphic SPECT Imaging

    No full text

    Multi-Pinhole SPECT Imaging With Silicon Strip Detectors

    No full text

    A system calibration and fast iterative reconstruction method for next-generation SPECT imagers

    No full text
    Recently, high-resolution gamma cameras have been developed with detectors containing> 105_106 elements. SPECT imagers based on these detectors usually also have a large number of voxel bins and therefore face memory storage issues for the system matrix when performing fast tomographic reconstructions using iterative algorithms. To address these issues, we have developed a method that parameterizes the detector response to a point source and generates the system matrix on the fly during MLEM or OSEM on graphics hardware. The calibration method, interpolation of coefficient data, and reconstruction results are presented in the context of a recently commissioned small-animal SPECT imager, called FastSPECT III
    • …
    corecore