911 research outputs found

    Patient empowerment: the LIFE approach

    Full text link
    In spite of the great strides that have been made in the treatment of diabetes, many patients do not achieve optimal outcomes. In an effort to address the gap between the promise and the reality of diabetes care, empowerment has been recognised as an effective patient-centred approach to diabetes care and education. A great deal of effort has been spent training healthcare professionals and developing patient education strategies within this framework. However, less effort has been spent helping patients to learn the lessons and acquire the skills needed to collaborate in the design of a workable diabetes care plan. This article outlines four fundamental lessons that need to be addressed as part of patient education and provides a simple approach called the LIFE plan to help patients truly take charge of their diabetes. Copyright © 2008 FENDPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/60963/1/114_ftp.pd

    Simulation of noise within BOTDA and COTDR systems to study the impact on dynamic sensing

    Get PDF
    Abstract Real-time structural health monitoring requires dynamic sensing of distributed strain and temperature. Brillouin Optical Time Domain Analysis (BOTDA) and Rayleigh Coherent Optical Time Domain Reflectometry (COTDR) are promising candidates to achieve dynamic sensing. A noise model with specific parametric simulation of independent laser and detector noise sources has been developed. Although ensemble averaging significantly enhances the signal-to-noise ratio (SNR) in both systems, its time-consuming accumulation procedure prevents dynamic sensing. The sequence of averaging in the signal processing workflow varies the SNR for both systems. The system components should be optimized to reduce averaging times and achieve the required system specifications, including dynamic sensing.This project was carried out under the UCL-Cambridge Centre for Doctoral Training in Photonic Systems Development, with funding from EPSRC (EP/G037256/1) gratefully acknowledged. The support from the Cambridge Centre for Smart Infrastructure and Construction is also acknowledged. Special acknowledgement to Prof Aldo Minardo for his profound advice and discussion on the BOTDA model.This is the final version of the article. It first appeared from Massey University Press via http://www.s2is.org/Issues/v8/n3/papers/paper8.pd

    A High Speed Hardware Scheduler for 1000-port Optical Packet Switches to Enable Scalable Data Centers

    Get PDF
    Meeting the exponential increase in the global demand for bandwidth has become a major concern for today's data centers. The scalability of any data center is defined by the maximum capacity and port count of the switching devices it employs, limited by total pin bandwidth on current electronic switch ASICs. Optical switches can provide higher capacity and port counts, and hence, can be used to transform data center scalability. We have recently demonstrated a 1000-port star-coupler based wavelength division multiplexed (WDM) and time division multiplexed (TDM) optical switch architecture offering a bandwidth of 32 Tbit/s with the use of fast wavelength-tunable transmitters and high-sensitivity coherent receivers. However, the major challenge in deploying such an optical switch to replace current electronic switches lies in designing and implementing a scalable scheduler capable of operating on packet timescales. In this paper, we present a pipelined and highly parallel electronic scheduler that configures the high-radix (1000-port) optical packet switch. The scheduler can process requests from 1000 nodes and allocate timeslots across 320 wavelength channels and 4000 wavelength-tunable transceivers within a time constraint of 1ÎŒs. Using the Opencell NanGate 45nm standard cell library, we show that the complete 1000-port parallel scheduler algorithm occupies a circuit area of 52.7mm2, 4-8x smaller than that of a high-performance switch ASIC, with a clock period of less than 8ns, enabling 138 scheduling iterations to be performed in 1ÎŒs. The performance of the scheduling algorithm is evaluated in comparison to maximal matching from graph theory and conventional software-based wavelength allocation heuristics. The parallel hardware scheduler is shown to achieve similar matching performance and network throughput while being orders of magnitude faster

    Occurrence of the Waxy Alleles \u3ci\u3ewxa\u3c/i\u3e and \u3ci\u3ewxb\u3c/i\u3e in Waxy Sorghum Plant Introductions and Their Effect on Starch Thermal Properties

    Get PDF
    The existence of two waxy alleles, wxa associated with no detectable granule bound starch synthase (GBSS) and wxb associated with apparently inactive GBSS, was recently reported in sorghum [Sorghum bicolor (L.) Moench]. In this paper, the occurrence of the wxa and wxb alleles in the USDA-ARS photoperiod-insensitive sorghum collection was determined, and the effects of the wxa and wxballeles on thermal properties of sorghum starch (gelatinization temperatures and energy requirements) measured by differential scanning calorimetry. Of the 51 purported waxy accessions examined, 14 tested positive for presence of amylose by iodine staining and were considered to be previously misclassified wild type lines. Nine accessions were mixed for presence or absence of amylose. Twenty-four of the 28 accessions confirmed to be waxy by negative iodine staining for amylose had no detectable GBSS using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (wxa), and four were show to contain GBSS (wxb). Mean gelatinization onset, peak, and end temperatures were significantly lower for wild-type than either of the two waxy genotypes. Mean gelatinization onset temperature was slightly higher for waxy-GBSS+ genotypes than waxy-GBSS− genotypes. Mean gelatinization end temperature was slightly higher for waxy-GBSS− genotypes than waxy-GBSS+ genotypes. Significant genetic variation was observed within genotypic classes, suggesting influence of additional modifier genes affecting sorghum starch structure or micro-environmental effects

    Occurrence of the Waxy Alleles \u3ci\u3ewxa\u3c/i\u3e and \u3ci\u3ewxb\u3c/i\u3e in Waxy Sorghum Plant Introductions and Their Effect on Starch Thermal Properties

    Get PDF
    The existence of two waxy alleles, wxa associated with no detectable granule bound starch synthase (GBSS) and wxb associated with apparently inactive GBSS, was recently reported in sorghum [Sorghum bicolor (L.) Moench]. In this paper, the occurrence of the wxa and wxb alleles in the USDA-ARS photoperiod-insensitive sorghum collection was determined, and the effects of the wxa and wxballeles on thermal properties of sorghum starch (gelatinization temperatures and energy requirements) measured by differential scanning calorimetry. Of the 51 purported waxy accessions examined, 14 tested positive for presence of amylose by iodine staining and were considered to be previously misclassified wild type lines. Nine accessions were mixed for presence or absence of amylose. Twenty-four of the 28 accessions confirmed to be waxy by negative iodine staining for amylose had no detectable GBSS using sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (wxa), and four were show to contain GBSS (wxb). Mean gelatinization onset, peak, and end temperatures were significantly lower for wild-type than either of the two waxy genotypes. Mean gelatinization onset temperature was slightly higher for waxy-GBSS+ genotypes than waxy-GBSS− genotypes. Mean gelatinization end temperature was slightly higher for waxy-GBSS− genotypes than waxy-GBSS+ genotypes. Significant genetic variation was observed within genotypic classes, suggesting influence of additional modifier genes affecting sorghum starch structure or micro-environmental effects

    Participation in a Diabetes Education and Care Program: Experience from the Diabetes Care for Older Adults Project

    Full text link
    There is very little reported information concerning the participation of older adults in diabetes education and care programs, factors related to their attendance, and the influence of attendance on program outcomes. In this study, which was part of a larger study of insulin therapy, subjects (≄65 years old) assigned to the intensive management group (n=53) were provided with educational sessions during the 18-month study period. Data for this group were examined to determine factors that influenced enrollment and attendance. Attendance rates for individual participants averaged 72% during the first 6 months months and 68% during the subsequent 12 months. Demographic factors. baseline knowledge test scores, and baseline glycosylated hemoglobin levels did not significantly influence participation. Greater distance from the clinic and shorter time using insulin were significantly related (P=.05) to attendance. Perceived benefits of the program included diabetes education (45%), glucose control (23%), and interacting with others who have diabetes (23%).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68301/2/10.1177_014572179802400205.pd

    Ultra-low pressure hydrocephalic state in NPH: benefits of therapeutic siphoning with adjustable anti-gravity valves

    Get PDF
    Background: Idiopathic normal-pressure hydrocephalus (NPH) is a condition of the elderly treated by ventriculoperitoneal shunt (VP) insertion. A subset of NPH patients respond only temporarily to shunt insertion despite low valve opening pressure. This study aims to describe our experience of patients who benefit from further CSF drainage by adding adjustable antigravity valves and draining CSF at ultra-low pressure. Methods: Single-centre retrospective case series of patients undergoing shunt valve revision from an adjustable differential pressure valve with fixed antigravity unit to a system incorporating an adjustable gravitational valve (Miethke proSA). Patients were screened from a database of NPH patients undergoing CSF diversion over 10 consecutive years (April 2008–April 2018). Clinical records were retrospectively reviewed for interventions and clinical outcomes. Results Nineteen (10F:9M) patients underwent elective VP shunt revision to a system incorporating an adjustable gravitational valve. Mean age 77.1 ± 7.1 years (mean ± SD). Eleven patients (58%) showed significant improvement in walking speed following shunt revision. Fourteen patients/carers (74%) reported subjective improvements in symptoms following shunt revision. Conclusions: Patients presenting symptoms relapse following VP shunting may represent a group of patients with ultra-low-pressure hydrocephalus, for whom further CSF drainage may lead to an improvement in symptoms. These cases may benefit from shunt revision with an adjustable gravitational valve, adjustment of which can lead to controlled siphoning of CSF and drain CSF despite ultra-low CSF pressure

    TPC2 is a novel NAADP-sensitive Ca2+ release channel, operating as a dual sensor of luminal pH and Ca2+

    Get PDF
    Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+-release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 ÎŒM but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.Publisher PDFPeer reviewe
    • 

    corecore