66 research outputs found

    Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology

    Get PDF
    OBJECTIVES: - To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens. METHODS: - The American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology convened an expert panel to develop an evidence-based guideline to establish standard molecular biomarker testing and guide therapies for patients with CRC. A comprehensive literature search that included more than 4,000 articles was conducted. RESULTS: - Twenty-one guideline statements were established. CONCLUSIONS: - Evidence supports mutational testing for EGFR signaling pathway genes, since they provide clinically actionable information as negative predictors of benefit to anti-EGFR monoclonal antibody therapies for targeted therapy of CRC. Mutations in several of the biomarkers have clear prognostic value. Laboratory approaches to operationalize CRC molecular testing are presented

    Molecular Biomarkers for the Evaluation of Colorectal Cancer

    Get PDF
    Objectives: To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens

    Results from the Xylitol for Adult Caries Trial (X-ACT)

    Get PDF
    Although caries is prevalent in adults, few preventive therapies have been tested in adult populations. This randomized clinical trial evaluated the effectiveness of xylitol lozenges in preventing caries in elevated caries-risk adults

    Prediction of Lung Cancer Histological Types by RT-qPCR Gene Expression in FFPE Specimens

    Get PDF
    Lung cancer histologic diagnosis is clinically relevant because there are histology-specific treatment indications and contraindications. Histologic diagnosis can be challenging owing to tumor characteristics, and it has been shown to have less-than-ideal agreement among pathologists reviewing the same specimens. Microarray profiling studies using frozen specimens have shown that histologies exhibit different gene expression trends; however, frozen specimens are not amenable to routine clinical application. Herein, we developed a gene expression–based predictor of lung cancer histology for FFPE specimens, which are routinely available in clinical settings. Genes predictive of lung cancer histologies were derived from published cohorts that had been profiled by microarrays. Expression of these genes was measured by quantitative RT-PCR (RT-qPCR) in a cohort of patients with FFPE lung cancer. A histology expression predictor (HEP) was developed using RT-qPCR expression data for adenocarcinoma, carcinoid, small cell carcinoma, and squamous cell carcinoma. In cross-validation, the HEP exhibited mean accuracy of 84% and ΞΊ = 0.77. In separate independent validation sets, the HEP was compared with pathologist diagnoses on the same tumor block specimens, and the HEP yielded similar accuracy and precision as the pathologists. The HEP also exhibited good performance in specimens with low tumor cellularity. Therefore, RT-qPCR gene expression from FFPE specimens can be effectively used to predict lung cancer histology

    Correction: Molecular Subtypes in Head and Neck Cancer Exhibit Distinct Patterns of Chromosomal Gain and Loss of Canonical Cancer Genes

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a frequently fatal heterogeneous disease. Beyond the role of human papilloma virus (HPV), no validated molecular characterization of the disease has been established. Using an integrated genomic analysis and validation methodology we confirm four molecular classes of HNSCC (basal, mesenchymal, atypical, and classical) consistent with signatures established for squamous carcinoma of the lung, including deregulation of the KEAP1/NFE2L2 oxidative stress pathway, differential utilization of the lineage markers SOX2 and TP63, and preference for the oncogenes PIK3CA and EGFR. For potential clinical use the signatures are complimentary to classification by HPV infection status as well as the putative high risk marker CCND1 copy number gain. A molecular etiology for the subtypes is suggested by statistically significant chromosomal gains and losses and differential cell of origin expression patterns. Model systems representative of each of the four subtypes are also presented

    Lung Squamous Cell Carcinoma mRNA Expression Subtypes Are Reproducible, Clinically Important, and Correspond to Normal Cell Types

    Get PDF
    Lung squamous cell carcinoma (SCC) is clinically and genetically heterogeneous and current diagnostic practices do not adequately substratify this heterogeneity. A robust, biologically-based SCC subclassification may describe this variability and lead to more precise patient prognosis and management. We sought to determine if SCC mRNA expression subtypes exist, are reproducible across multiple patient cohorts, and are clinically relevant

    Differential Pathogenesis of Lung Adenocarcinoma Subtypes Involving Sequence Mutations, Copy Number, Chromosomal Instability, and Methylation

    Get PDF
    Lung adenocarcinoma (LAD) has extreme genetic variation among patients, which is currently not well understood, limiting progress in therapy development and research. LAD intrinsic molecular subtypes are a validated stratification of naturally-occurring gene expression patterns and encompass different functional pathways and patient outcomes. Patients may have incurred different mutations and alterations that led to the different subtypes. We hypothesized that the LAD molecular subtypes co-occur with distinct mutations and alterations in patient tumors.The LAD molecular subtypes (Bronchioid, Magnoid, and Squamoid) were tested for association with gene mutations and DNA copy number alterations using statistical methods and published cohorts (n = 504). A novel validation (n = 116) cohort was assayed and interrogated to confirm subtype-alteration associations. Gene mutation rates (EGFR, KRAS, STK11, TP53), chromosomal instability, regional copy number, and genomewide DNA methylation were significantly different among tumors of the molecular subtypes. Secondary analyses compared subtypes by integrated alterations and patient outcomes. Tumors having integrated alterations in the same gene associated with the subtypes, e.g. mutation, deletion and underexpression of STK11 with Magnoid, and mutation, amplification, and overexpression of EGFR with Bronchioid. The subtypes also associated with tumors having concurrent mutant genes, such as KRAS-STK11 with Magnoid. Patient overall survival, cisplatin plus vinorelbine therapy response and predicted gefitinib sensitivity were significantly different among the subtypes.The lung adenocarcinoma intrinsic molecular subtypes co-occur with grossly distinct genomic alterations and with patient therapy response. These results advance the understanding of lung adenocarcinoma etiology and nominate patient subgroups for future evaluation of treatment response

    MyD88 Is Required for Protection from Lethal Infection with a Mouse-Adapted SARS-CoV

    Get PDF
    A novel human coronavirus, SARS-CoV, emerged suddenly in 2003, causing approximately 8000 human cases and more than 700 deaths worldwide. Since most animal models fail to faithfully recapitulate the clinical course of SARS-CoV in humans, the virus and host factors that mediate disease pathogenesis remain unclear. Recently, our laboratory and others developed a recombinant mouse-adapted SARS-CoV (rMA15) that was lethal in BALB/c mice. In contrast, intranasal infection of young 10-week-old C57BL/6 mice with rMA15 results in a nonlethal infection characterized by high titer replication within the lungs, lung inflammation, destruction of lung tissue, and loss of body weight, thus providing a useful model to identify host mediators of protection. Here, we report that mice deficient in MyD88 (MyD88βˆ’/βˆ’), an adapter protein that mediates Toll-like receptor (TLR), IL-1R, and IL-18R signaling, are far more susceptible to rMA15 infection. The genetic absence of MyD88 resulted in enhanced pulmonary pathology and greater than 90% mortality by day 6 post-infection. MyD88βˆ’/βˆ’ mice had significantly higher viral loads in lung tissue throughout the course of infection. Despite increased viral loads, the expression of multiple proinflammatory cytokines and chemokines within lung tissue and recruitment of inflammatory monocytes/macrophages to the lung was severely impaired in MyD88βˆ’/βˆ’ mice compared to wild-type mice. Furthermore, mice deficient in chemokine receptors that contribute to monocyte recruitment to the lung were more susceptible to rMA15-induced disease and exhibited severe lung pathology similar to that seen in MyD88βˆ’/βˆ’mice. These data suggest that MyD88-mediated innate immune signaling and inflammatory cell recruitment to the lung are required for protection from lethal rMA15 infection
    • …
    corecore