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Abstract
Purpose—Lung squamous cell carcinoma (SCC) is clinically and genetically heterogeneous and
current diagnostic practices do not adequately substratify this heterogeneity. A robust, biologically-
based SCC subclassification may describe this variability and lead to more precise patient prognosis
and management. We sought to determine if SCC mRNA expression subtypes exist, are reproducible
across multiple patient cohorts, and are clinically relevant.

Experimental Design—Subtypes were detected by unsupervised consensus clustering in five
published discovery cohorts of mRNA microarrays, totaling 382 SCC patients. An independent
validation cohort of 56 SCC patients was collected and assayed by microarrays. A nearest-centroid
subtype predictor was built using discovery cohorts. Validation cohort subtypes were predicted and

Copyright © 2010 American Association for Cancer Research
Corresponding author (requests for reprints): Dr. D. Neil Hayes, 450 West Drive, Campus Box 7295, University of North Carolina at
Chapel Hill Chapel Hill, NC 27599, Tel: (919) 966-3786, Fax: (919)-966-1587, hayes@med.unc.edu.
Potential conflicts of interest: DNH, CMP, and PSB hold a provisional patent that is related to work described in this manuscript but
there is no current financial interest. All other authors have no conflicts of interest.

NIH Public Access
Author Manuscript
Clin Cancer Res. Author manuscript; available in PMC 2011 October 1.

Published in final edited form as:
Clin Cancer Res. 2010 October 1; 16(19): 4864–4875. doi:10.1158/1078-0432.CCR-10-0199.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



evaluated for confirmation. Subtype survival outcome, clinical covariates, and biological processes
were compared by statistical and bioinformatic methods.

Results—Four lung SCC mRNA expression subtypes, named primitive, classical, secretory, and
basal, were detected and independently validated (P < 0.001). The primitive subtype had the worst
survival outcome (P < 0.05) and is an independent predictor of survival (P < 0.05). Tumor
differentiation and patient sex were associated with subtype. The subtypes’ expression profiles
contained distinct biological processes (primitive – proliferation, classical – xeniobiotics
metabolism, secretory – immune response, basal – cell adhesion) and suggested distinct
pharmacologic interventions. Comparison to lung model systems revealed distinct subtype to cell
type correspondence.

Conclusions—Lung SCC consists of four mRNA expression subtypes that have different survival
outcomes, patient populations, and biological processes. The subtypes stratify patients for more
precise prognosis and targeted research.
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STATEMENT OF TRANSLATIONAL RELEVANCE

Lung squamous cell carcinoma (SCC) has broad clinical, genetic and morphologic
heterogeneity. Currently, there is no subclassification that adequately describes this
variability and SCC patients are basically treated as though they have the same disease. One
explanation for SCC variability is that SCC is not a singular disease but a mixture of multiple
discrete diseases or subtypes defined by innate biological differences. Using five discovery
cohorts and an independent validation cohort totaling 438 patients, we demonstrate that
SCC is composed of four robust mRNA expression subtypes (named primitive, classical,
secretory and basal). The subtypes have significantly different survival outcomes, patient
populations, and biological processes. Using these subtypes as a basis for a future clinical
diagnostic assay, patients could receive a more precise prognosis. Additionally, we
described model system partners for the subtypes which can be used for targeted basic
research.

INTRODUCTION
Lung cancer is the leading cause of cancer-related death worldwide (1). Squamous cell
carcinoma (SCC) is a major histological type and comprises approximately 30% of all
pulmonary tumors (2,3). SCC is defined by the presence of cytoplasmic keratinization and/or
desmosomes (intracellular bridges) (4). Clinically, SCC tumors occur more often in smokers
and males compared to the other histological types (2,5). Patients affected with SCC tumors
show a wide range of clinical outcomes. For instance, 83% of autopsied SCC patients had
regional metastases (5) and 68% of SCC stage I patients survived beyond 5 years (6). Within
SCC, there is noticeable morphologic variability, especially among poorly differentiated
tumors (4,7). The WHO SCC type includes a stratification of this variability with four variants
(papillary, small cell, clear cell, and basaloid) (4) but their prevalence, clinical and biologic
significance remains unclear. Because there is significant pathologic and clinical outcome
variability within the SCC histological type, a robust, biologically derived subclassification
may be valuable.

Recent years have seen progress in classification of a variety of malignancies using full genome
molecular assays, primarily those directed at mRNA expression (e.g. leukemia (8), breast (9),
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lung adenocarcinoma (10)). A successful approach is unsupervised class discovery, which
detects naturally-occurring tumor classes (“mRNA expression subtypes”) without pre-
specified characteristics such as patient survival (8). Preliminary efforts have been made in
SCC, suggesting the existence of SCC mRNA expression subtypes. In independent analyses,
investigators (11-13) discovered two mRNA expression subtypes with intriguing biological
profiles and a corresponding patient survival difference. These studies show that SCC might
be subclassified using mRNA expression into groups with clinical relevance; however, the
studies were not performed in a manner which validated either the number or the nature of
these intriguing classes. A validated mRNA expression classification could substantially
progress patient care and research in lung SCC. In this study, we describe four novel
reproducible expression subtypes (primitive, classical, secretory, and basal) of lung SCC. The
SCC subtypes have different survival outcomes, patient demographics, physical
characteristics, biological processes, and correspondence to normal lung cell types.

MATERIALS AND METHODS
Tumor collection

Frozen, surgically-extracted, macro-dissected, primary tumors from treatment-naïve patients
at the University of North Carolina with a lung SCC diagnosis were collected under
Institutional Review Board approved protocols #90-0573 and #07-0120. Morphologic quality
control was based on a review of a representative Hematoxylin-and-Eosin stained section from
paraffin-embedded tissue immediately adjacent to the frozen tissue for confirmation of
squamous histology by four pathologists (Supplement Fig. 1) and for quantification of tumor
content. Tumor RNA was extracted (14) and assayed for mRNA expression using Agilent
44,000 probe microarrays for a total of 56 microarrays. Microarrays were processed by
normexp background correction and loess normalization (15). This dataset is referred to as the
“validation cohort” and was deposited at NCBI1.

Published datasets
A structured search for publicly available SCC mRNA expression microarray datasets was
conducted via Gene Expression Omnibus and PubMed and manually selecting datasets that
have a large number of lung SCC samples to permit subtype analysis and that have significant
cross-dataset gene reliability, as measured by integrative correlations (16). This search yielded
five datasets (referred to as the “discovery cohorts”) from the following studies: Bild et al
(17), Expression Project for Oncology (Expo)2, Lee et al (18), Raponi et al (13), and Roepman
et al (19). Published cohorts contained surgical-resections from treatment-naïve patients if
indicated. Clinical data and raw or processed microarray data were obtained. Only microarrays
with SCC histology were retained. Raw microarrays or gene lists from lung model systems
were obtained (20-23). Microarrays were subjected to standard quality assessments, mapped
to a common transcript database and processed into gene-level expression values (Supplement
Table 1).

Unsupervised subtype discovery
The subtype discovery and validation procedure is depicted in a flowchart (Supplement Fig.
2). Genes with high reliability and variability were selected similar to previously described
methods (9, 10, 12, 13, 16). Gene reliability was measured by integrative correlations and genes
exceeding an estimated false discovery rate of 0.1% were retained (16). To select variable
genes, genes in each discovery cohort were ranked by median absolute deviation in decreasing

1http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE17710
2http://www.intgen.org/expo.cfm
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order. These ranks were averaged and re-ranked to make a single variable gene list. The top
25% of this ranked list, totaling 2,307 genes, was used for clustering. Prior to clustering, each
dataset was gene median centered (24, 25). Subtypes were determined in each discovery cohort
by the Consensus Clustering algorithm via ConsensusClusterPlus (26, 27). This algorithm
completed 1,000 microarray subsamples at a proportion of 80% and clustered these subsamples
by an agglomerative average-linkage hierarchical algorithm using 1 – Pearson correlation
coefficient distance. Consensus values, the proportion that two microarrays occupy the same
cluster, were calculated and then clustered by an agglomerative average-linkage hierarchical
algorithm using Euclidean distance.

Subtype summarization by centroids
Centroids are median expression profiles of a group of arrays and were prepared using methods
previously described (25,28). Centroids were determined by taking a group of microarrays
from a gene median centered cohort and obtaining the median of each gene. Multi-cohort
centroids are determined by taking a group of centroids and taking the median of each gene.

Differentially expressed genes
Differentially expressed genes were determined by a standardized mean difference procedure
that considers between cohort and within cohort variation (29) using the the GeneMeta
Bioconductor library3 and a random effects option. Gene set enrichment analysis was used to
determine gene sets significantly enriched in ranked gene lists (30).

Validation cohort subtype prediction
Subtype status of the validation cohort was predicted by a nearest-centroid classification
algorithm following previously published methods (28). In brief, the predictor was built, using
only the discovery cohorts, by adding genes to a balanced centroid, assessing subtype
prediction error rates by leave-one-out cross validation, adding genes differentially expressed
from the most mis-predicted subtype to its centroid, and stopping once accuracy failed to
improve. Subtype predictor centroids, unsupervised gene lists, and all gene multi-cohort
centroids are available online4.

Survival analysis
The R library survival was used for survival statistical analyses. Patients dead within one month
following surgery were considered to have procedure-related complications and not considered
in survival analyses. Five patients met this condition all from the UNC cohort. Relapse-free
survival time was defined as the time from surgery until first relapse or death.

Immunohistochemistry
1 mm cores were taken from available UNC cohort tissue blocks and randomly organized into
tissue microarray (TMA) blocks. Consequal 4 μm array block sections were assembled on
array slides and stained with Hematoxylin & Eosin, MAC387 (Dako, #M0747), p63 (Dako,
#M7247), CK7 (Leica Microsystems, #PA0942 RN7), and MCM6 (Santa Cruz Biotechnology,
#SC-22781).

Computational procedures were executed using R version 2.7.15 and Bioconductor libraries6

unless otherwise specified.

3http://bioconductor.org/packages/2.2/bioc/html/GeneMeta.html
4http://cancer.unc.edu/nhayes/publications/scc/
5http://www.r-project.org/
6http://www.bioconductor.org
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RESULTS
Unsupervised discovery of lung SCC expression subtypes in five cohorts

Lung squamous cell carcinomas (SCC) are a heterogeneous group of tumors, and therefore,
we performed a common set of mRNA expression analyses using 5 previously published lung
SCC datasets in order to determine how many distinct subtypes/groups of disease might exist.
These five “discovery cohorts” were analyzed for the presence of mRNA expression subtypes
using the Consensus Clustering methodology (26) as previously described for lung cancer
(10). Consensus Clustering is a semi-quantitative method for determining an optimal number
of mRNA expression clusters/groups. Results show that all five cohorts contain four clusters
(Supplement Fig. 3). There is no compelling evidence for a higher number of clusters. To test
if the four clusters from each cohort have the same expression profiles, a published centroid
clustering method was followed (10). The centroid clustering shows a four group structure,
where each cohort is in each group, with only one cohort absent in one group (Supplement Fig.
4). Therefore, the four clusters (“mRNA expression subtypes”) found in the five discovery
cohorts have consistent expression profiles. To derive the optimal subtype for each patient, a
multi-cohort centroid classification was used to assign each patient to a subtype, similar to
published methods (28). A centroid clustering based on these optimal subtypes again shows a
four group structure and complete, unambiguous cross-cohort correspondence (Fig. 1). The
cross-cohort clustering is statistically significant (Sigclust (31) p-values in Fig. 1).
Interestingly, the subtypes have approximately the same prevalence among the discovery
cohorts (Table 1). Using biological characteristics described below, the lung SCC mRNA
expression subtypes are named: primitive, classical, secretory, and basal.

SCC subtype independent validation
While the four SCC subtypes were “cross-cohort” validated in that they were repeatedly found
in five cohorts, this validation was not independent because discovery co-occurred with
validation. For an independent validation, we tested the hypothesis that the SCC subtypes will
exist in a new, discovery-independent cohort. To test this hypothesis, a subtype predictor was
built using the discovery cohorts, which consisted of 208 genes and had 94% leave-one-out
cross validation accuracy. Using this predictor, subtype classifications were made for
microarrays from a new cohort of 56 lung SCC tumors collected at UNC. All four subtypes
were predicted in the UNC cohort and in approximately the same prevalence as the discovery
cohorts (Fig. 2; Table 1), which supports subtype reproducibility. To confirm the validity of
the predictions, a comparison of expression characteristics between the discovery and UNC
cohorts was completed similar to a recent related study (32). We compiled a large validation
gene set of the discovery cohorts’ top 100 genes overexpressed and underexpressed per subtype
(Fig. 2A), which yielded 1,117 unique genes. Subtype expression patterns are highly
concordant between the discovery and UNC cohorts across the validation gene set (Fig. 2A,
2B), confirming the large scale expression patterns are consistent beyond the predictor gene
set. In addition, the UNC cohorts’ subtypes are a statistically significant partition of its mRNA
expression (SWISSMADE (33) subtypes vs. random classes, P < 0.001). We conclude that the
predefined SCC subtypes exist in the UNC cohort and are, therefore, independently validated.

To preliminarily evaluate if clinically-applicable biomarkers can distinguish the subtypes, we
selected one overexpressed gene per subtype (basal – S100A8; classical – TP63; secretory –
KRT7; primitive – MCM6) for immunohistochemical protein expression comparison using a
tissue microarray subset of the UNC cohort (N=38). All antibodies targeting these genes except
MCM6 had sufficient staining for analysis. Protein expression clustering using basal, classical
and secretory samples revealed three essentially mutually exclusive groups with one marker
defining each group (Supplement Fig. 5). These groups were significantly associated with
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tumor subtype (Fisher exact P = 0.007). This suggests that SCC subtypes can also be
distinguished by IHC and future work may find the optimal panel of IHC antibodies.

Subtypes exhibit distinct biological processes
In order to discern biological processes associated with each subtype, subtype mRNA
expression was evaluated for enrichment in gene ontology, pathway, transcription factor
binding site, and cytoband gene sets by the Gene Set Enrichment Analysis (30). Because of
the inherent redundancy in biology, we have collapsed these processes into functional themes
(Table 2). Here, subtypes are described in terms of overexpression relative to the other
subtypes.

The distinctive functional theme of the primitive subtype is cellular proliferation, which
includes genes such as minichromosome maintenance 10 – MCM10, E2F transcription factor
3 – E2F3, thymidylate synthetase – TYMS and polymerase alpha 1 – POLA1; and a published
proliferation signature (34). This proliferation theme is overexpressed in the most rapidly
growing breast cancer cell lines (35) and in the most poorly differentiated, poor survival tumors
from various organ sites (34). Complementary to the cellular proliferation functional theme,
target genes of the E2F transcription factor, a known proliferation modulator (36), are
overexpressed in this subtype as well as two members of the E2F family, E2F3 and E2F8.
Other primitive subtype functional themes are RNA processing and DNA repair, which could
be a consequence of the proliferation theme or an independent process.

The classical subtype exhibits the distinctive functional theme of xenobiotics metabolism,
which detoxifies foreign chemicals. One study showed overexpression of this theme in
smokers’ versus nonsmokers’ airway transcriptomes including genes such as GPX2 and
ALDH3A1 (37). Furthermore, this subtype is enriched with a gene signature derived from lung
cell lines exposed to cigarette smoke, including genes such as AKR1C3 (38). Interestingly, the
classical subtype has the greatest concentration of smokers and the heaviest smokers among
the subtypes. This theme including genes (GPX2, AKR1C1, TXNRD1, GSTM3) was noted
as overexpressed in one head and neck squamous cell carcinoma subtype (group 4 in (39)),
suggesting a possible relative to the lung SCC classical subtype. The classical subtype
overexpresses TP63, a transcription factor essential for stratified squamous epithelium
development (40) that is more commonly overexpressed and amplified in lung SCC compared
to other histological types (41). Cytoband gene overexpression, a proxy for underlying genomic
DNA amplification, suggests 3q27-28, which contains TP63, is amplified in the classical
subtype. This study’s microarrays do not have enough resolution to measure TP63 isoform-
specific expression, but this may be a goal of future investigations.

Immune response is the major distinctive functional theme of the secretory subtype and
includes genes such as Rho GDP dissociation inhibitor beta - ARHGDIB and tumor necrosis
factor receptor 14 – TNFRSF14. Consistent with this theme, the secretory subtype has a NF-
kappaB regulation theme and NF-kappaB target gene overexpression. This subtype also
overexpresses the lung secretory cell markers: mucin – MUC1, pulmonary surfactant proteins
- SFTPC, SFTPB, SFTPD (7,42). Interestingly, thyroid transcription factor 1 – NKX2-1/TTF1,
known to be highly expressed in adenocarcinoma (43), is overexpressed in the secretory
subtype relative to the other SCC subtypes. This commonality could be a result of
adenocarcinoma’s glandular cell structure, which perhaps has secretory properties similar to
the SCC secretory subtype. A UNC normal lung centroid shows very similar expression pattern
to the secretory subtype over the independent validation gene list, which was selected without
considering normal samples (Fig. 2C). To evaluate any possible difference between the
secretory subtype samples and normal samples, an unsupervised clustering was completed
using only these microarrays (Supplement Fig. 6). Secretory and normal microarrays clustered
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with their group in essentially all cases; suggesting that the secretory subtype and normal lung
are distinct mRNA expression groups.

The basal subtype expression profile shows a cell adhesion functional theme including genes
such as the laminins - LAMB3, LAMC2; collagens – COL11A1, COL17A1; integrins –
ITGB4, ITGB5; and claudin 1 – CLDN1. Additionally, this subtype has an epidermal
development theme, including as keratin 5 - KRT5, psoriasin - S100A7, and gap junction
protein beta 5 - GJB5. Several of the basal subtype’s genes, such as COL17A1, LAMC2, and
CDH3, are common with a HNSCC subtype (Group I in (39)) and a breast cancer subtype
(basal-like in (9)) suggesting these different organ site subtypes may share biological
properties. The basal subtype overexpresses several S100 family genes: S100A2, S100A3,
S100A7, S100A8, S100A9, S100A12, S100A14. S100A8 and S100A9 are highly expressed
in the basal layer in psoriatic epidermal tissue (44). S100A2 is a marker specific for the basal
layer of the lung epithelium and SCC (45). KRT5 is a basal layer marker in epithelial tissue
(46). The basal subtype is enriched with genes whose products are localized in the basement
membrane.

In parallel to differential biological functions are patterns of mRNA expression with
implications for pharmacologic intervention (Table 2). For example, TYMS, a target of
antifolates including Pemetrexed, is overexpressed in the primitive subtype. The antifolate
metabolism pathway is differentially expressed among SCC subtypes with the secretory
subtype showing underexpression and similarity to adenocarcinoma (Supplement Fig. 7).
Overexpression of TYMS has been shown to be related to Pemetrexed resistance in a dose-
dependent manner in lung cancer cell culture (47). Also PARP1, a target of several drugs in
development is overexpressed in the primitive subtype.

SCC subtype tumor morphologic and patient characteristics
The subtypes’ morphologic and patient characteristics are displayed in Table 1. Grade is
significantly associated with subtype (Fisher exact test P = 0.024). The primitive-subtype has
an overrepresentation of poorly differentiated tumors and the basal subtype has an
overrepresentation of well differentiated tumors. Tumor stage is not appreciably different
among subtypes, although we note that the classical and secretory subtypes have increased
proportions of stage III tumors. The surgical cohorts oversample early stages and possibly
greater sampling of late stage patients may find additional subtype-stage associations.
Specimen quality metrics of percent tumor, percent necrosis, and percent lymphocyte
infiltration are not appreciably different among the subtypes, arguing against sampling artifacts
as the source of the subtypes. Two cases of WHO morphologic SCC subclass were definitively
called by pathologist review (one basaloid in primitive and classical subtypes) suggesting that
these SCC morphologic subclasses are rare.

Patient sex approaches statistically significant association with subtype (Fisher exact test P =
0.058). Females are overrepresented in the primitive subtype and males in the classical subtype.
Consistent with the classical subtype’s smoking expression profile, the classical subtype has
the greatest mean pack years, 73, (Kruskal-Wallis test P = 0.319) and the lowest proportion of
non-smokers, 1% (Fisher exact test P = 0.214), although these observations do not meet
statistical significance.

SCC subtypes have different patient survival outcomes
Overall and relapse-free survival outcomes are significantly different among SCC subtypes
(Fig. 3). The primitive subtype has worse overall and relapse-free survival compared to the
other subtypes in all stages and in stage I (Fig. 3), while the basal, secretory and classical appear
to have similar outcomes. Considering the UNC cohort alone, the primitive subtype outcome
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is also worse compared to the other subtypes over all stages (logrank test OS P = 0.066, RFS
P = 0.004) and stage I (logrank test OS P = 0.057, RFS P = 0.007). In the UNC cohort, 7/18
recurrences were extrapulmonary and the basal subtype had the lowest number and proportion,
0/3. In order to evaluate the independent contribution of SCC subtype to patient risk in light
of known prognostic factors, univariate and multivariate Cox proportional hazard models were
constructed (Supplement Table 2). Significant univariate predictors were primitive subtype for
overall survival and relapse-free survival and tumor stage for overall survival. Patient age and
tumor grade were not significant predictors of either outcome. In multiple variable models,
only subtype retained significance for overall survival and relapse-free survival. Tumor stage’s
non-significant prediction may be due to the under-representation of late stage patients across
the cohorts.

Raponi et al reported two SCC mRNA expression subtypes with a survival difference and
provided a list of differentially expressed genes where high expression of the “majority of the
genes were down-regulated in the high-risk group” (13). Comparison of Raponi et al’s
microarrays by their gene list and the subtypes discovered in this study shows two clear subtype
groups: underexpression (primitive and secretory) and overexpression (basal and classical)
(Supplement Fig. 8). Therefore, the four subtypes discovered in this study map to prior results
and this study has divided each of the prior subtypes into two new ones and improves the SCC
mRNA expression subtype granularity. Interestingly, the Raponi et al poor survival subtype
totals 43% of their patients where the poor survival subtype of this study (primitive) is 16% of
their patients. It appears that a fraction of Raponi et al’s high risk subtype shows poor survival
outcome relative to the remainder of SCC.

SCC subtypes are similar to different normal lung cell types and SCC cell lines
To evaluate the hypothesis that SCC subtypes are derived from different cell types present in
the normal lung, SCC subtypes were compared by mRNA expression to three published model
systems. The first model, “Mouse lung development”, is a time series of mouse lungs extracted
from embryonic stages to adult (21). Expression similarity is defined as high positive Pearson
correlation between an SCC subtype and time points within the model. The primitive subtype
shows expression similarity to early stage mouse lung and the secretory subtype shows
similarity to late stage mouse lung (Fig. 4A). The second model, “Human bronchial epithelial
cell air liquid interface culture” (HBEC-ALIC), is a time series of cultured normal, healthy,
human bronchial epithelial cells in which the early time points consist of stratified basal cells
and later time points include secretory and ciliated cells (22). The basal subtype showed
expression similarity to the early time points during which basal cells are predominant (Fig.
4B). The primitive and secretory subtypes show expression similarity to the later time points
at which there are secretory and ciliated cells. The third model system, “Human microdissected
lung cell compartments” (HMLCC), was laser capture microdissected cells contained in
surface epithelium and in submucosal glands of normal healthy lung (20). The secretory
subtype overexpresses genes that are overexpressed in submucousal glands (Fig. 4C). The basal
subtype overexpresses genes that are overexpressed in surface epithelia. The classical subtype
does not show appreciable similarity to any specific lung model, is the only subtype to have
this property, and could be most similar to multiple or unobserved cell types. Therefore, by the
combination of all three lung models, 3 of the 4 SCC subtypes have unique similarities to
different, normal lung cell types.

In addition to the cell type models, SCC subtypes may correspond to different SCC cell lines
which could establish additional manipulatable models for future investigations into subtype
biology. To ascertain if SCC cell lines correspond to different SCC tumor subtypes by mRNA
expression, four published SCC cell line microarrays (23) were given subtype classifications
by the nearest-centroid predictor. Interestingly, the four cell lines were predicted to be different
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subtypes (Fig. 2D). Expression of the subtypes between the cell lines and tumors are consistent
over the validation gene set (Fig. 2A,D). For example, genes are consistent and mutually
exclusive in the cell lines as predicted (HCC15 – primitive and MCM10; HCC95 – classical
and AKR1C3; HCC2450 – secretory and MUC1; H157 – basal and MMP13).

DISCUSSION
The principal novel hypotheses tested in this study is that lung SCC expression subtypes exist,
are reproducible, clinically relevant, and exhibit patterns that correlate with unique cell types
in the normal lung. These subtypes (primitive, basal, secretory, and classical) were identified
in an unbiased and objective manner and are supported by cross-cohort validation using five
training cohorts and by independent validation using a sixth cohort, which together total 438
patients. The expression subtypes were also found in a wide variety of patient populations from
the United States, Asia and Europe, in a wide variety of cohort sizes from 36 to 127. All cohorts
showed approximately the same subtype proportions, overall: primitive – 16%, classical – 37%,
secretory – 26%, basal – 21%. These subtypes were associated with tumor differentiation and
patient sex. Survival outcomes are significantly different among the subtypes and subtype is
an independent predictor of survival. Possible limitations of our analysis include possible
sample quality artifacts or patient behavior, such as smoking immediately prior to surgery;
however, all six cohorts showed the same results so any limitation would have to occur in six
large, independently collected, cohorts.

The SCC expression subtypes are biologically distinct and show similarities to distinct normal
lung cell populations. These biological characteristics serve as the basis for the SCC
nomenclature. The basal subtype exhibits many characteristics of lung basal cells such as: cell
adhesion and epidermal development functional themes, S100A2 and KRT5 basal cell markers,
overexpression of genes whose products are localized in the basement membrane, similarity
to basal cells in the HBEC-ALIC model, and similarity to surface epithelia in the HMLCC
model. The secretory subtype has many features of lung secretory cells such as: surfactant and
mucin overexpression, similarity to secretory cells in the HBEC-ALIC model, and similarity
to submucosal glands in the HMLCC. The primitive subtype has a cellular proliferation
functional theme, the worst survival outcome, an overabundance of female patients, the most
nonsmokers, and an overabundance of poorly differentiated tumors. This subtype is similar to
early embryonic mouse lungs, where primitive, less differentiated cells may be predominant
and would be consistent with the poorly differentiated nature of these tumors. The primitive
subtype also has similarity to late stage HBEC-ALIC, which could be explained by lung
“transient expression” in which differentiation markers are expressed during early lung
formation and again in the developed lung (48). Alternatively, a late-emerging and late-active
cell type in HBEC-ALIC may be most similar to the embryonic mouse lung. The classical
subtype, exhibits features representative of typical lung SCC including the highest prevalence
at 37%, overabundance of males, greatest patient smoking behavior, overexpression of TP63,
and putative amplification of the TP63-containing locus 3q27-28.

The distinct SCC subtype to cell population similarities could be explained by the SCC
subtypes having different ancestor cells. These different ancestor cells could be cell types of
distinct lineages or cellular differentiation stages such as proposed in breast cancer (49). This
scenario provides a reason why the SCC subtypes have dramatically different mRNA
expression. The subtypes could arise by genetic mutation from different ancestors that have
different mRNA expression and this ancestral mRNA expression could persist in progeny
tumor cells. This putative subtype ancestral cell information could be utilized in developing
SCC subtype pharmacologic interventions that exploit differences in the ancestral cell types.
A caveat to our interpretation of SCC subtype to cell population similarity is that the similarity
could be caused by coincidence and expression similarities could reflect similar biology and
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not similar origin. The lung has multiple proposed cellular development pathways and future
studies that describe the molecular profiles of the lung cell types or lung cancer stem cells
would further clarify the putative ancestral cells of the SCC subtypes (50).

The SCC subtypes may have applications in patient care and in cancer research. For instance,
patients with the primitive subtype could be treated more aggressively because of this subtype’s
poor survival expectation or could be given a more accurate prognosis than by using traditional
prognostic factors alone. Basic cancer research could be conducted using the subtype model
system partners described in this study. The SCC subtypes could be useful for therapy benefit
studies and possibly serve as a foundation for clinical trial selection.

In conclusion, we identified four, robust, expression subtypes of lung SCC using a multi-cohort
discovery and validation strategy. The subtypes are clinically and phenotypically different,
suggesting different therapies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Discovery cohort correlation matrix and dendrogram
Cells are labeled by discovery cohort and adjusted centroid where A-D are from Supplement
Fig. 4. Cells in the matrix represent the 1 – Pearson correlation coefficient between two
discovery cohort adjusted centroids by shading according to the scale above (B). For example,
BildA and RoepmanA have highly similar expression profiles, have a large Pearson correlation
coefficient, a small 1 – Pearson correlation coefficent value and have a cell darkly shaded. The
matrix is ordered by columns and rows by the dendrogram at the top of the matrix (A). The
dendrogram is the result of an agglomerative, average-linkage, hierarchical clustering using
this correlation matrix. The four expression subtypes are marked (C). Statistical significance
of the three binary divisions leading to the four subtypes is shown by Sigclust (31) p-values in
the dendrogram at the corresponding binary split.
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Figure 2. Independent validation of lung SCC expression subtypes
Heatmaps depict mRNA expression of discovery cohorts (A), the validation cohort (B), a
normal lung centroid (C), and SCC cell lines (D). Microarrays are columns and are labeled
with their class. Genes are rows and are ordered by a discovery cohort hierarchical clustering.
The normal lung centroid is scaled to the validation cohort for visualization. Manually-selected,
lung-relevant, validation genes are displayed separately for viewability.
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Figure 3. Survival outcomes of SCC subtypes
Survival was estimated by the Kaplan-Meier method using all cohorts’ available data. The
sample sizes (N) are different than the overall study sample size due to data availability (OS:
Bild et al, Raponi et al, Roepman et al, and UNC cohorts; RFS: Lee et al, Roepman et al, and
UNC cohorts). P-values are from log rank tests evaluating the independence of survival and
subtype.
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Figure 4. SCC subtypes compared to lung cell type models
The relationship of relative SCC subtype expression differences to relative expression
differences of published lung model systems. The models “Mouse lung development” (21) and
“Human bronchial epithelial cell air liquid interface culture (HBEC-ALIC)” (22) are
microarray time series, where time is indicated on the horizontal axis (A,B). Points mark
Pearson correlation coefficients of SCC subtype centroids to model time points using the top
1,000 genes having the greatest Pearson correlation coefficient with time. Bars represent 95%
confidence intervals. Lines connect points corresponding to the same subtype. Large positive
correlations indicate mRNA expression similarity while large negative correlations indicate
dissimilarity. In (A), ‘e’ refers to embryonic day and ‘p’ refers to postnatal day. The model
“Human microdissected lung cell compartments (HMLSCC)” (20) is compared to SCC
subtypes via a heatmap of genes that are overexpressed in submucosal glands and in surface
epithelium as rows and subtype centroids in columns (C).
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Table 2
Subtype biological functional themes

Significantly enriched gene sets that are overexpressed in a subtype (GSEA pre-ranked, FDR < 0.05) and genes
representative of the set are shown. Pathways and biological processes are organized into functional themes,
indicated by italics. Transcription factor binding site refers to gene sets having a predicted transcription factor
binding site. Cellular component refers to gene sets having a particular cellular location. Drug targets are defined
as overexpressed in all pairwise subtype comparisons (FDR < 0.01).

Primitive subtype

Proliferation: cell cycle, DNA replication, pyrimidine metabolism, purine metabolism, mitosis, cell division, DNA replication, cell cycle

 MCM10, MCM3, MCM6, BUB1, TIMELESS, POLA1, TYMS, ATIC, PRIM1, CKAP5, CDK2, E2F3, E2F8, CHEK1

RNA processing: mRNA processing, rRNA processing, tRNA processing, Nuclear mRNA splicing via spliceosome

 LSM2, SNRPA, CPSF1, EXOSC5, WDR3, PTBP2, TRMT11

DNA repair: base excision repair, nucleotide excision repair, mismatch repair, DNA repair, response to DNA damage stimulus

 LIG1, PARP1, UNG, SSRP1, RECQL4, KIF22, FANCA, BARD1, GTF2H4

Cellular component: nucleoplasm, spliceosome, nucleolus

Transcription factor binding sites: E2F, NRF

Drug targets: TYMS, DNMT1, BCL2, CDK2.

Published signatures: Cellular proliferation (34)

Classical subtype

Energy metabolism: oxidative phosphorylation, citrate cycle, electron transport chain

 COX5B, NDUFB5, ATP5G3, COX7B, DLD, SDHD, TXN, ATP6V1F

Xenobiotics metabolism: metabolism of xenobioitics by cytochrome p450, glutathione metabolism

 ODC1, GSTA4, GSTM4, GSTO1, GPX2, ALDH3A1, AKR1C3, EPHX1, ADH7, G6PD

Cellular component: mitochondrial inner membrane, respiratory chain

Cytobands. 3q27-28: TP63, BCL6, ABCC5

Published signatures: Lung cell culture 24 hour smoke exposure (38)

Secretory subtype

Immune response: complement and coagulation cascade, antigen processing and presentation, natural killer cell mediated cytotoxicity, leukocyte
transendothelial migration, B cell receptor signaling, T cell receptor signaling, toll-like receptor signaling, immune response, inflammatory
response, innate immune response, cellular defense response, defense response, humoral immune response, T cell activation

 SERPINA1, C2, C5, VAV1, GZMB, ITGAM, NFKBIE, ARHGDIB, TNFRSF14, HLA-DPA1, IL32, ALOX5, AIF1, DPP4, TCIRG1, TLR2,
TLR4, IRF7

Positive regulation of I-kappaB kinase/NF-kappaB cascade:

 RIPK2, CASP1, RHOA, TGM2, MYD88, APOL3,

Transcription factor binding sites: PEA3, NFKB, AML, IRF1

Cellular component: external side of plasma membrane, lysosome

Drug targets: C1QA, CSF2RA, CSF2RB, IL3RA, ALOX5, DPYD, SOAT1, TCN2

Basal subtype

Cell adhesion: ECM recepor interaction, focal adhesion, cell adhesion, cell matrix adhesion, homophillic adhesion

 ITGB4, LAMB3, COL11A1, COL17A1, LAMC2, RAC1, ACTN1, PGF, ITGB5, TNFAIP6, CLDN1, HES1, CLSTN1

Epidermal development: epidermis development, keratinocyte differentiation

 GJB5, S100A7, KRT5, FABP5, COL17A1, LAMC2

Cellular component: proteinaceous extracellular membrane, basement membrane, collagen

Drug targets: TCN1, MMP3

Clin Cancer Res. Author manuscript; available in PMC 2011 October 1.


