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Abstract

Head and neck squamous cell carcinoma (HNSCC) is a frequently fatal heterogeneous disease. Beyond the role of human
papilloma virus (HPV), no validated molecular characterization of the disease has been established. Using an integrated
genomic analysis and validation methodology we confirm four molecular classes of HNSCC (basal, mesenchymal, atypical,
and classical) consistent with signatures established for squamous carcinoma of the lung, including deregulation of the
KEAP1/NFE2L2 oxidative stress pathway, differential utilization of the lineage markers SOX2 and TP63, and preference for
the oncogenes PIK3CA and EGFR. For potential clinical use the signatures are complimentary to classification by HPV
infection status as well as the putative high risk marker CCND1 copy number gain. A molecular etiology for the subtypes is
suggested by statistically significant chromosomal gains and losses and differential cell of origin expression patterns. Model
systems representative of each of the four subtypes are also presented.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) is

a heterogeneous disease that represents the seventh most

common form of cancer in the United States. Beyond the role

of human papilloma virus (HPV), no validated molecular

characterization of the disease has been established [1–4]. To

further characterize the diversity of HNSCC as well as other

tumors, our group and others have suggested gene expression

(GE) subtypes as a means to prioritize the dominant genomic

patterns within a specific tumor group [5–11]. Validated

subtypes based primarily on GE profiling of breast cancer,

glioblastoma, lung cancer, and others have garnered broad

interest [5–7,9–11]. Preliminary work has suggested that

clinically relevant subtypes are also found in head and neck

cancer [8], but the findings have not been replicated, no model

systems have been proposed, and the etiology of the subtypes is

obscure. In other tumor types the validation of molecular

signatures has been established by the following approach: (i)

the subtypes were shown to be statistically valid, (ii) genomic

alterations underlying the subtypes were documented, and (iii)

model systems representative of the expression subtypes were

identified. The current study was conceived to address each of

the points mentioned above. Because the goal of this study was

to detect gene expression patterns and underlying genomic

events that are present in HNSCC, the study design did not

incorporate any molecular subtypes that were defined a priori –

e.g. subtypes classified by HPV status.
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Results

Unsupervised Discovery of HNSCC Expression Subtypes
In order to address the question of whether statistically

significant gene expression subtypes can be detected in HNSCC,

we performed hierarchical clustering in an unsupervised and

unbiased manner using well-established and objective techniques

[7]. As in the prior work by Chung et al. [8], we documented the

presence of four gene expression subtypes. Gene expression

heatmaps (Figure 1A) and plots produced by ConsensusCluster-

Plus [12] (Figure S1 A – C) do not support the presence of

additional statistically significant clusters in this dataset. A

representative set of genes known or suspected to be relevant for

head and neck cancer is shown in Figure 1B, and test statistics for

the association of all genes in the dataset with tumor subtype are

provided in Table S1. SigClust [13] analysis showed that the p-

values for all of the pairwise comparisons of the expression

subtypes were significant at the.05 level after applying a Bonferroni

correction for multiple comparisons (Figure S1D). We refer to the

expression subtypes as basal (BA), mesenchymal (MS), atypical

(AT), and classical (CL) based on biological characteristics of genes

highly expressed in each subtype.

Clinical Characteristics
The clinical characteristics of the patients included in the

current study represent a broad cross section of patients with

HNSCC that is highly representative of the population seen in

a typical clinical practice (Table 1). There was no correlation of

tumor subtype with age, gender, race, alcohol use, pack years, or

tumor size. Tumor subtypes were statistically associated with site,

although all sites had tumors in each of the expression subtypes,

with one exception (hypopharynx showed no BA). Additionally, no

site contributed more than 58% of its samples to one expression

subtype. No expression subtype was made up of more than 68% of

tumors from a single site. Therefore, unlike other molecular

markers such as HPV or p16, we conclude that expression

subtypes captured a dimension of biology which was not limited to

a single anatomic site [14]. There were additional statistically

significant associations between tumor subtype and HPV status,

treatment, node status, and overall stage. It is notable that more

BA trended towards being well differentiated, whereas 13 of 16

poorly differentiated tumors were either MS or CL, although this

difference was not statistically significant.

Validation of Subtypes
We then turned our attention to the question of whether the

expression subtypes detected in the current dataset corresponded

to those previously reported by Chung et al. [8]. Wilkerson et al.

[7] presented a method for comparing gene expression patterns

found in expression subtypes across multiple studies. We use the

same procedure, which is described more fully in the Methods

section. Briefly, centroids of expression subtypes measure average

gene expression values, and subtypes with concordant expression

patterns produce centroids that are more highly correlated than

subtypes with discordant expression patterns. A clear correspon-

dence was observed (Figure 1C), with BA, MS, AT, and CL

Figure 1. Gene Expression Subtypes in Head and Neck Squamous Cell Carcinoma. Heatmaps of the expression values of the 840 classifier
genes (A) and select genes associated with HNSCC (B) for each of the expression subtypes. Validation heatmaps of the centroid-based distances
between the centroids of the expression subtypes in the current study and those from Chung et al. (C) and the LUSC subtypes of Wilkerson et al. (D).
doi:10.1371/journal.pone.0056823.g001
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Table 1. Clinical Data.

Total Basal Mesenchymal Atypical Classical p-Value

Num. Patients 138 44 33 32 29

Age (Years) .75

Median 57 60 57 56.5 58

Num. ,40 9 5 3 1 0

Sex .64

Female 43 14 13 8 8

Male 95 30 20 24 21

Race .34

Black 32 8 8 6 10

White 104 36 24 26 18

Alcohol Use .44

None/Light 86 26 24 20 16

Heavy 50 18 8 12 12

Smoking .11

Never/Light 27 13 6 6 2

Current/Former 109 30 26 26 27

Mean (Packyears) 36.0 36.7 33.1 30.1 45.0 .13

Differentiation .10

Well 26 14 5 3 4

Moderate 92 27 21 25 19

Poor 19 3 7 3 6

Tumor Site 1e-4*

Larynx 30 10 4 5 11

Oral Cavity 55 30 18 2 5

Oropharynx 34 3 5 20 6

Hypopharynx 13 0 2 5 6

Stage** .034*

I 10 2 4 0 4

II 14 8 1 2 3

III 28 8 8 4 8

IVa 77 26 16 22 13

IVb 6 0 3 3 0

IVc 10 0 0 1 0

Tumor Status .76

T0-T2 40 12 10 8 10

T3-T4 77 30 16 16 15

Node Status .0026

N0-N1 66 30 14 6 16

N2-N3 51 12 12 18 9

Treatment 4.5e-6

Primary Chemo/RT 62 11 13 26 12

Surgery 74 33 20 5 16

HPV Status .035

Negative 82 27 21 17 17

Positive 14 1 3 8 2

Chromosomal Instability Index .056 .052 .048 .036 .136 2.2e-4

Summaries of select clinical covariates in the HNSCC expression subtypes. P-values for categorical variables were computed using Fisher’s Exact Test or a Monte Carlo
version of Fisher’s Exact Test (p-values marked with *). P-values for continuous variables were computed using the Kruskal-Wallis test. **Stage I includes one patient that
was classified as stage 0.
doi:10.1371/journal.pone.0056823.t001
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demonstrating the same expression patterns as the Chung subtypes

1, 2, 3, and 4, respectively. Having discovered four subtypes using

independent and unbiased datasets and methods, we consider

these four expression subtypes to be validated.

Distinct Biological Processes and Similarities to Lung
Squamous Cell Carcinoma
The expression patterns found in the subtypes suggest the

presence of fundamental differences in the underlying biology of

the associated tumors (Table S2). Gene expression in BA showed

a strong similarity to the signature found in basal cells from the

human airway epithelium, including high expression of genes such

as COL17A1, which is associated with the extracellular matrix, the

growth factor and receptor TGFA and EGFR, and the transcription

factor TP63 [14]. Tumors in MS were exemplified by elevated

expression of genes associated with the epithelial-to-mesenchymal

transition (EMT), including the mesenchymal markers VIM and

DES, the transcription factor TWIST1, and the growth factor HGF

[15,16]. AT tumors had a strong HPV+ signature, as evidenced by

elevated expression of CDKN2A, LIG1, and the transcription factor

RPA2 [17]. Tumors in CL, the subtype with the heaviest smoking

history, showed high expression of genes associated with exposure

to cigarette smoke, including the xenobiotic metabolism genes

AKR1C1/3 and GPX2 [7,18,19] and the transcription factor

NFE2L2 [10].

Squamous cell carcinomas from different sites in the body share

a number of molecular characteristics – e.g. loss of chromosome

3p and gain of chromosome 3q [20,21] – so we hypothesized that

a correspondence between our expression subtypes and recently

reported lung squamous cell carcinoma (LUSC) expression

subtypes [7] would be observed. To investigate a broader

phenotype of squamous cell carcinomas of the upper aerodigestive

tract, we extended the centroid predictor methodology and

evaluated the correspondence of centroids from LUSC and

HNSCC (Figure 1D). Remarkably, a clear pattern of correlation

was observed in which the BA, MS, and CL subtypes of HNSCC

corresponded to the LUSC basal, secretory, and classical subtypes,

respectively, of Wilkerson et al. [7]. Examination of the TCGA

LUSC data [10] provided additional compelling evidence of the

underlying connections between the expression subtypes at the two

tumor sites (Figure S2). The correspondence between the basal

subtypes is notable because Wilkerson et al. [7] described time

course experiments involving cultured human bronchial epithelial

cells in which gene expression patterns at early time points showed

a strong resemblance to those seen in the basal subtype of LUSC.

Similarly, as shown in Table S3, we observed that the basal

subtype of HNSCC is most similar to the day 3 time point in the

time course data from the air liquid interface (ALI) model [22].

DNA Copy Analysis by Subtype
We then turned our attention to the genomic alterations of

HNSCC as measured by copy number (CN) arrays. First we

confirmed many regions previously reported as altered in

HNSCC, including gain of chromosomes 3q, 7p, and 11q

(statistically significant gains are seen in both 11q13 and 11q22)

and loss of chromosomes 3p, 9p, and 14q (Table S4 ). As has been

seen in other tumors [11], there are both concordant and

discordant patterns of copy number alteration in key regions of

the genome as a function of tumor subtype (Figure 2, Table S5 ).

For example, gains of 3q vary by expression subtype (p = .01),

whereas no significant CN differences between the subtypes were

detected in 11q13, which contains CCND1 (p = 1). The canonical

HNSCC 7p gain occurred in a region containing EGFR, but these

alterations were found in BA, MS, and CL, not AT (p= .01). CN

values in 3p were not significantly different across the subtypes

(p = .47). Losses of the 9p region that contains CDKN2A were

found in BA and CL only, and the CN differences were significant

(p = .01). Focal CN loss was found in 14q32 for MS, CL, and is

particularly pronounced in AT, but although this did not not reach

statistical significance. This region contains miR203, which is

notable because it targets DNp63 [23], one of six protein products

of TP63. Chromosomal instability also varied considerably by

subtype (p = 2.2e-4), as seen in Figure S3.

Copy Number Changes and Differential Expression of
Genes in Chromosome 3q by Expression Subtype
One of the quintessential genomic alterations associated with

squamous cell carcinomas is gain of 3q [20,21], and in the

previous section we noted that the CN values in this region varied

by expression subtype. Interestingly, there was a distinct differen-

tial proportional usage of the three genes typically discussed as the

targets of the amplicon: TP63, PIK3CA, and SOX2 (Figure 3). The

CL and AT subtypes demonstrated proportionally higher expres-

sion of SOX2 relative to MS and BA, which in fact appeared to

express less SOX2 than normal tonsil controls. By contrast, the BA

subtype expressed dramatically higher levels of TP63 than any

other group. Similarly, although the MS subtype exhibited copy

number gains in 3q, none of the putative target genes appeared to

be expressed at levels higher than normal tonsil. Kruskal-Wallis

tests showed that the expression of each of TP63, PIK3CA, and

SOX2 was associated with expression subtype after a Bonferroni

adjustment for multiple testing (Table S6 ). This observation raises

the possibility that the heterogeneity of HNSCC might in part be

explained by differential usage of the transcription factors (SOX2

and TP63) and oncogene (PIK3CA) in the 3q amplicon, which is

more complex than has been previously reported [24]. It also

suggests that differential usage of transcription factors and

oncogenes, promoted in part by distinct copy number alterations,

may contribute to the gene expression signatures that define the

expression subtypes.

Copy Number Events Involving Canonical Cancer Genes
Earlier we noted that the copy number values in gain and loss

regions were associated with expression subtype. Now we describe

similar findings that were obtained when gene-specific copy

number values for genes known to play a role in HNSCC –

CCND1, CDKN2A, and EGFR – were considered, not the broader

regions discussed above. In the above discussion we stated that

gains of 11q13 were not significantly different across the subtypes,

and Table 2 shows that similar results were found when attention

was restricted to gains of CCND1. In contrast, the frequency of

EGFR gains ranged from 0% in AT to 31% in CL (p= .069), while

the frequency of CDKN2A losses varied between 10% in MS to

63% in CL (p= .004). Both of these findings are concordant with

the findings in the broader regions of 7p and 9p, respectively,

described above.

Past studies have detected associations between distinct genomic

events, and these findings provided insight into either the

underlying biology or the clinical management of cancer patients

[25,26]. In HNSCC, simultaneous CCND1 gains and CDKN2A

losses have been studied by Okami et al. [27] and Namazie et al.

[28], with Namazie et al. detecting an association between these

genomic events. We found that CCND1 CN gains were associated

with CDNK2A losses across all subtypes (Table S7), and that the

joint event was associated with the expression subtypes (Table 2),

thereby confirming and extending the results of Namazie et al.

Molecular Subtypes in Head and Neck Cancer
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Clinical Outcomes by Expression Subtype and Focal
Genomic Alterations
Having parsed the set of nearly 140 HNSCC tumors into

expression subtypes, and in light of known risk factors such as

HPV, smoking, and alcohol use, we considered whether additional

stratification for patient outcomes could be suggested. We first

investigated whether the survival advantage reported by Chung

et al. for ‘‘subtype 10 could be reproduced in the current cohort.

We were unable to confirm this result, and in the current study

there was no association between recurrence-free survival and

tumor subtype, either overall (Figure 4A) or when we restrict to

late stage patients (not shown). These differences may be explained

by the clinical heterogeneity of the disease combined with the fact

that tumor site distributions in the two studies are markedly

different.

In order to clarify whether known or suspected confounders

might have affected our ability to detect subtype-specific

differences in patient outcome, we evaluated the impact of HPV

status on overall survival. We observed a relatively large but

imprecise effect due to the overall small number of HPV+ patients

(Figure 4B). We therefore considered it reasonable to re-evaluate

the cohort with HPV+ patients excluded. Exclusion of HPV+
patients revealed that the AT subgroup demonstrated a particu-

larly unfavorable outcome (Figure 4C), and this difference was

statistically significant when compared to all other subtypes

combined (Figure 4D). We then accessed an independent set of

122 tissue microarray (TMA) samples in an effort to validate this

finding. Because array-based GE and immunohistochemistry

(IHC) staining values are not comparable, it was not feasible to

Figure 2. Copy Number Gains and Losses in the Expression Subtypes. Plots of the mean copy number values in the HNSCC expression
subtypes after smoothing and outlier removal, both genome-wide (A) and for specific chromosomes or regions of interest (B).
doi:10.1371/journal.pone.0056823.g002

Figure 3. Average Gene Expression and Copy Number by
Expression Subtype. Mean gene-specific copy number and gene
expression values in the HNSCC expression subtypes and normal tonsil
samples (NL) for genes in the 3q amplicon.
doi:10.1371/journal.pone.0056823.g003
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predict the tumor subtype of each TMA sample. Instead we used

low EGFR and high p16 staining as a proxy for AT status. The

difference in survival times was not statistically significant, but we

obtained results similar to those described above (Figure S4).

We also investigated whether any focal copy number events

were associated with clinical outcome. Previous studies have

detected a correlation between CCND1 gains and decreased

recurrence-free survival times in HNSCC [29]. We obtained

similar findings when we examined the CN values for all tumor

samples (Figure S5), although our results are marginally significant

(p = .07). Remarkably few AT subjects exhibited CCND1 gains

(Table 2), and this suggests the presence of two largely distinct

groups of patients with poor clinical outcomes: those with CCND1

gains and those that are HPV2 and AT. Figure S6 supports this

conclusion.

Expression Subtypes in Model Systems
The Cancer Cell Line Encyclopedia [30] contains genomic data

from over 900 human cancer cell lines, including both GE and CN

data from 19 esophageal and 18 upper aerodigestive tract cell

lines. We applied our centroid predictor to the GE data from these

cell lines and found that all four expression subtypes were present

(Table S8). These findings are particularly compelling in light of

the clinical relevance of the expression subtypes because they

provide the basis for future studies involving model systems. Figure

S7 provides examples to illustrate that subtype-specific CN events

are also seen in the cell lines.

Discussion

Our primary result was the detection of four gene expression

subtypes in HNSCC – basal, mesenchymal, atypical, and classical.

We also showed that these subtypes have biological and clinical

relevance, and therefore they provide a useful and informative

mechanism of classifying HNSCC tumors that complements

existing methods based on histology and tumor site. Analysis of

publicly available expression datasets revealed that these subtypes

are reproducible in HNSCC [8] and are remarkably similar to

those found in LUSC [7,10]. Although gene expression patterns

for the secretory LUSC subtype are similar to those seen in the

mesenchymal subtype of HNSCC, we favor an alternate

nomenclature. Data confirming the glandular origin of HNSCC

is less compelling compared to that for the lung, and evidence of

a mesenchymal signature is abundant [7]. While it would be

possible to use the existing data to produce a gene predictor for

HPV status, we did not attempt to do this because results of this

nature were presented by Martinez et al. [31]. Regions of

recurrent DNA copy number gain and loss were detected, some

of which contain known oncogenes and tumor suppressors. The

copy number values in certain aberrant regions were associated

with tumor subtype, which suggests that copy number events may

contribute to the development of expression subtypes. All of the

expression subtypes were detected in HNSCC cell lines, a finding

that provides the basis for future studies.

We now briefly discuss the definitions of the expression

subtypes. Basal and classical were chosen because the expression

patterns in these subtypes showed strong similarities to the basal

and classical subtypes of LUSC. Wilkerson et al. compared the

expression patterns in the LUSC subtypes to time course data

from developing human bronchial epithelial cells, and they found

that the basal subtype had similar expression patterns to those seen

at early time points when basal cells are most common. Similarly,

as shown in Table S2, we observed that the basal subtype of

HNSCC is most similar to the day 3 time point in the time course

data from the ALI model [22]. The classical subtype exhibits

canonical genomic alterations associated with squamous cell

carcinoma – e.g. deletion of 3p and 9p, amplification of 3q, and

focal amplification of both EGFR and CCND1. Mesenchymal was

selected based on pathway analysis indicative of an epithelial to

mesenchymal transition. Finally, atypical was chosen because of

the lack of either EGFR amplification or deletion of 9p.

The differences in the expression patterns found in the subtypes

are clinically relevant. TP63 produces six distinct proteins, and

DNp63 is the most abundant isoform in HNSCC [32]. Yang et al.

[33] show that DNp63 promotes cell proliferation. Chatterjee

et al. [32] noted that exposure to cisplatin led to decreased levels

of DNp63, so this treatment may be particularly effective for

patients in BA. Barbieri et al. [34] showed that loss of TP63 in

HNSCC cell lines led to the acquisition of a mesenchymal

phenotype, which is compelling in light of the low expression levels

of TP63 seen in MS. Martin and Cano [35] indicated that elevated

expression of TWIST1 or BMI1 in HNSCC cell lines could

increase the likelihood of invasiveness and migration. Because MS

tumors exhibited an EMT phenotype and increased expression of

Table 2. DNA Copy Number Events Involving Canonical Cancer Genes.

Total Basal Mesenchymal Atypical Classical p-Value

CCND1 Gain .12

No 54 17 14 16 7

Yes 30 9 7 4 10

CDKN2A Loss .004

No 63 20 19 18 6

Yes 21 6 2 2 11

Joint CCND1/CDKN2A Joint Event .068

No 72 23 20 19 10

Yes 12 3 1 1 7

EGFR Gain .069

No 72 22 18 20 12

Yes 12 4 3 0 5

Summaries of focal copy number events for specific genes in the HNSCC expression subtypes.
doi:10.1371/journal.pone.0056823.t002
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both TWIST1 and BMI1, these subjects may be more likely to

develop distant metastases. The fact that EGFR is overexpressed in

the vast majority of HNSCC tumors [36] makes EGFR inhibitors

an attractive treatment option for this disease. However, these

therapies are less likely to be effective in AT tumors because EGFR

expression was lower than in the other expression subtypes. SOX2

and ALDH1 were highly expressed in AT and CL, and both of

these genes are putative cancer stem cell markers because of their

contributions to self-renewal and a pleuripotent phenotype

[37,38]. The protein product of PIK3CA is p110a, which

phosphorylates AKT. Activated AKT contributes to the survival

of tumor cells, and thus oncogenic transformation [39]. West et al.

[40] showed that exposing normal lung epithelial cells to nicotine

facilitates activation of AKT by making it dependent on PI3K

alone. This observation, combined with the high levels of smoking

seen in CL, suggests that PI3 kinase inhibitors provide an

attractive treatment option for CL tumors.

There were several limitations to this study. First, we did not

have GE, CN, and clinical data for all study subjects, which

limited our ability to jointly analyze these variables. In addition,

although the subtype labels were objectively defined by a clustering

algorithm and the gene expression patterns were independently

validated, the clinical associations were not. Copy number arrays

were generated for all samples with sufficient quality and quantity

of DNA. Unfortunately, over 20% of the arrays failed to meet

standardized quality metrics. Also, it was not clear which

isoform(s) of TP63 were assayed by our gene expression arrays,

and unfortunately the role that TP63 plays in the basal subtype

cannot be fully appreciated without knowledge of these isoforms.

Because the HPV+ samples were removed when conducting our

secondary survival analysis, these results should be viewed as

exploratory and thus must be independently validated. Finally, the

HPV status of all patients was not available.

In conclusion, we confirmed four molecular classes of HNSCC

(basal, mesenchymal, atypical, and classical), consistent with

signatures established for squamous carcinoma of the lung. Using

an integrated genomic analysis and validation methodology, we

documented subtypes identified by canonical tumor suppressor

genes and oncogenes, including deregulation of the KEAP1/

NFE2L2 oxidative stress pathway, differential utilization of the

lineage markers SOX2 and TP63, and preference for the

oncogenes PIK3CA and EGFR. For potential clinical use, the

signatures are complimentary to classification by HPV infection

status as well as the putative high risk marker CCND1 copy

number gain. A molecular etiology for the subtypes is suggested by

statistically significant chromosomal gains and losses and differ-

Figure 4. Recurrence-Free Survival in Expression Subtypes. Kaplan-Meier plots and Log-Rank Test p-values comparing recurrence-free
survival times in all expression subtypes (A), HPV+ vs. HPV2 subjects (B), all expression subtypes in HPV2 subjects (C), and AT vs. non-AT in HPV2
subjects (D). Statistical significance was assessed using the Log Rank Test.
doi:10.1371/journal.pone.0056823.g004
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ential cell of origin expression patterns. Model systems represen-

tative of each of the four subtypes were also presented.

Materials and Methods

Tumor Collection and Genetic Assays
After receiving written informed consent, frozen, surgically

extracted, macrodissected head and neck tumors were collected at

the University of North Carolina under Institutional Review

Board protocol #01–1283. Tumor RNA was extracted and

mRNA expression was assayed using Agilent 44K microarrays.

Tumor DNA was extracted and DNA copy number was assayed

using Affymetrix GenomeWide SNP 6.0 chips. A summary of all

genetic data used in this study can be found in Table S9.

mRNA Expression Analysis
Quality control procedures were applied to microarray probe-

level intensity files. A total of 138 tumor arrays remained after

removing low-quality arrays, duplicate arrays, and arrays from

non-HNSCC samples. The normexp background correction and

loess normalization procedures [41] were applied to the probe-

level data. After log2 transformation, probes were matched to

a common gene database to produce expression values for 15597

genes.

Unsupervised Expression Subtype Discovery
The procedure described here is similar to that which appeared

in Wilkerson et al. [7]. After expression values were gene median

centered, gene variability was computed using the median

absolution deviation. The 2500 most variable genes were selected.

ConsensusClusterPlus [12] was used to perform unsupervised

clustering for these genes in the 138 arrays. This procedure was

performed with 1000 randomly selected sets of microarray samples

using a sampling proportion of 80% and a distance metric equal to

one minus the Pearson correlation coefficient.

Statistical Significance of Gene Expression Patterns in
Expression Subtypes
To confirm the statistical significance of four clusters, SigClust

[13] was applied using the set of the 2500 most variable genes

described above. All pairwise comparisons of the subtypes were

examined using 1000 simulated samples and the original co-

variance estimation method.

Differentially Expressed Genes and Metabolic Pathways
Differentially expressed genes were detected with the R package

samr [42] using a median FDR threshold of.01. For each of the

UNC subtypes we compared the gene expression values in the

subtype to all other subtypes combined. DAVID [43] was then

used to find KEGG pathways that showed enrichment for the

highly expressed genes in each subtype. In addition, differentially

expressed genes with known functional categories, e.g. transcrip-

tion factors, were found by comparing the subtype-specific gene

lists to known gene ontology categories [44].

Published Expression Data
The microarray probe-level intensity files produced by Chung

et al. [8] were subjected to background correction, normalization,

and gene-level summarization procedures similar to those de-

scribed above. This produced gene expression values for 60

subjects and 8224 genes. The subtype labels for these 60 arrays

that appeared in [8] are referred to as Chung subtypes 1, 2, 3, and

4.

Summary RPKM values for 20,502 genes and 178 subjects were

obtained based on the RNASeq data presented in [10]. The

RPKM values were log2 transformed, and any gene that contained

at least one missing value was removed from the analysis. This

produced gene expression value for 15,314 genes.

Validation of Expression Subtypes
Consensus clustering assigns a subtype label to every array. As

a result, some arrays may not be representative of their subtype.

Using silhouette widths [45], we identified a set of 125 ‘‘core’’

samples whose expression patterns were more similar to those of

members of their own subtype than other subtypes. ClaNC [46],

a classification method based on nearest centroids, was then

applied to the UNC expression data from the core samples in an

effort to create a set of classifier genes whose expression signature

could be used to classify new samples. Minimizing the cross-

validation error rate produced a list of 840 classifier genes (210

genes per subtype).

We identified the classifier genes whose expression values are

also present in the Chung expression dataset, and then restricted

the UNC and Chung expression datasets to these genes. After gene

median centering each dataset separately, we found the centroid

for each of the UNC and Chung subtypes by computing the

median expression value for each gene over all arrays having the

appropriate subtype label. As in [7], the distances between the

UNC and Chung centroids were computed using a distance metric

equal to one minus the Pearson correlation coefficient. This

validation process was repeated using the LUSC data of Wilkerson

et al. [7]. The RNASeq data from [10] was handled similarly with

the following differences: (i) gene expression values from the UNC

and log2(RPKM) values from the TCGA datasets were separately

median centered and standardized by gene, (ii) predicted class

labels were found, but class centroids were not computed.

DNA Copy Number Analysis
CEL files were subjected to quality control procedures using the

Affymetrix Genotyping Console, and arrays that produced

contrast QC measurements above the default threshold of.4 were

removed from subsequent analyses. The intensity values in the

CEL files were then converted to log2 copy number values using

the R package aroma [47] and a pooled collection of normal

samples. A total of 107 arrays remained after manually reviewing

the genome-wide copy number profiles, 84 of which have

expression subtype labels. Missing values were imputed using the

non-missing value from the closest probe. Segmentation was

performed using DNAcopy [48].

Recurrent copy number gains and losses were detected with

DiNAMIC [49] after smoothing and median centering the copy

number profiles, as was done in [11]. DiNAMIC p-values were

computed using 250 cyclic shifts, and gains and losses were

classified as statistically significant if resulting p-values were less

than.05. Regions harboring recurrent CN gains and losses were

found using the bootstrap confidence interval procedure at level.95

with 500 bootstrap samples.

Associations between expression subtype and the five most

significant gain and loss events were assessed as in [11]. First, for

each subject the mean CN value over the corresponding

confidence interval was computed. This was done with the

smoothed and median centered CN values that were used to

compute the confidence intervals, as described above. Then

Kruskal-Wallis tests were applied to assess the association between

each subject’s mean CN value and the expression subtype labels.
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Copy Number Gains and Losses of Canonical Cancer
Genes
The gene-specific copy number was determined by computing

the mean of all segmented copy number values at probes lying

within or immediately adjacent to the gene. For each subject we

classified a gene as having a copy number gain (loss) if the gene-

specific copy number was above.35 (below 2.35), which is

approximately two standard deviations above (below) the mean

of all segmented copy number values.

Assessing HPV Status
Human papillomavirus was assessed using in situ hybridization.

Slide deparaffinization, conditioning, and staining with INFORM

HPV III Family 16 Probe (B; Ventana Medical Systems) were

done on the Ventana Benchmark XT Autostainer according to the

manufacturer’s protocol. The probes have affinities to HPV

genotypes 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, and 66. Slides

were scored as positive for HPV if a punctuate or diffuse pattern of

signal were observed in the tumor nuclei.

Statistical Analysis
R-2.12.2 and R-2.15.1 were used to perform all data analyses

and create all figures. The statistical significance of associations

between all categorical variables was assessed with Fisher’s Exact

Test or a Monte Carlo version of Fisher’s Exact Test (p-values

include an asterisk). Kruskal-Wallis tests were used to assess the

statistical significance of associations of continuous variables with

the expression subtypes. The survival package [50] was used to

perform all survival analyses, and all p-values were computed

using the log rank test. Recurrence-free survival (RFS) time was

defined to be the time in months from tumor biopsy to death,

recurrence, or loss to follow-up. Complete clinical data for all

subjects, including RFS time, is presented in Table S10.

Chromosomal Instability Index
For a given subject, we computed the median of the absolute

value of the smoothed, segmented copy number values in each

chromosome arm. The median of the arm-specific medians was

defined to be the chromosomal instability index, which is similar to

the definition that appears in [11].

Cancer Cell Line Data
CN and GE data are available for 18 esophagus and 19 upper

aerodigestive tract cell lines that were classified as squamous cell

carcinoma in the Cancer Cell Line Encyclopedia [30]. GE data in

the cell lines are available for 803 of the 840 genes in our classifier.

After restricting to these common genes, we normalized the GE

data for the cell lines so that it had the same gene-specific means

and standard deviations as in our classifier. We then used the

centroid-based method described above to predict expression

subtypes for the cell lines.

Data Availability
GE, CN, and select clinical data are available from GEO

(accession number GSE39368).

Supporting Information

Figure S1 Evidence Supporting the Presence of Four
Expression Subtypes. Results are produced by Consensu-

sClusterPlus for 138 subjects and the 2500 most variable genes. (A)

Heatmap of the consensus matrix for k = 4 clusters. Entries in the

consensus matrix measure the proportion of times two samples

occur in the same cluster. High values (dark blue) show samples

that are highly similar. (B) Plot of consensus cumulative

distribution functions (CDFs) for different numbers of clusters k.

Large differences between k= 2 (red), k = 3 (yellow), and k= 4

(green) shows greater stability with increasing numbers of clusters.

Increasing k beyond 4 produces small gains. (C) The tracking plot

shows that large numbers of samples change cluster label for k= 2,

k = 3, and k= 4, indicating unstable clusters. However, only a small

number of subjects change class between k= 4 and k= 5. (D)

Bonferroni-adjusted SigClust p-values are highly significant (6

tests), indicating that all pairwise comparisons of the gene

expression patterns in the four clusters are statistically significantly

different.

(TIF)

Figure S2 Expression Subtypes in HNSCC and LUSC.
Gene expression heatmap for the 715 of the 840 HNSCC from the

current study (A) and the TCGA LUSC data (B). Strong

similarities are seen between CL in both tumor types as well as

MS in HNSCC and SE of LUSC. Gene expression heatmap for

a representative set of genes known or suspected to be relevant for

head and neck cancer from the core samples (C) and the TCGA

LUSC data (D).

(TIF)

Figure S3 Chromosomal Instability Index by Expres-
sion Subtype. Boxplots of chromosomal instability indices in

each of the gene expression subtypes as well as normal tonsil

samples (NL).

(TIF)

Figure S4 Kaplan-Meier Curves for HPV- Tissue Micro-
array Samples. Kaplan-Meier curves illustrating differences in

recurrence-free survival times for tissue microarray samples based

on HPV status and immunohistochemical staining group (EGFR

low/p16 high vs. others). Statistical significance was assessed using

the log rank test.

(TIF)

Figure S5 Kaplan-Meier Curves for CCND1 Copy
Number Gains. Kaplan-Meier curves illustrating differences in

recurrence-free survival times for subjects with and without

CCND1 copy number gains. Statistical significance was assessed

using the log rank test.

(TIF)

Figure S6 Kaplan-Meier Curves Illustrating Two
Groups with Poor Survival Outcomes. Kaplan-Meier curves

illustrating differences in recurrence-free survival times for four

mutually exclusive groups of patients: (1) HPV+ subjects (HPV+),
(2) HPV2 patients with CCND1 gains (CCND1 Gain), (3) HPV2

patients without CCND1 gains that are AT (HPV2 AT), (4) all

remaining patients (Other). Statistical significance was assessed

using the log rank test.

(TIF)

Figure S7 Copy Number Plots from the Cancer Cell
Line Encyclopedia Data. Copy number plots show that

genomic events detected in the UNC HNSCC cohort can also

be found in the HNSCC cell lines from the Cancer Cell Line

Encyclopedia. A. Amplifications in chromosome 3q are seen in all

predicted subtypes, and the predicted classical subtype exhibits

focal amplification of the region containing SOX2. B. SCC15

(predicted basal) exhibits focal amplification of EGFR, while

HS840T (predicted atypical) has normal copy number. C. Both

KYSE140 (predicted mesenchymal) and KYSE70 (predicted

classical) exhibit focal deletion of CDKN2A. D. Both FADU
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(predicted mesenchymal) and SCC15 (predicted basal) exhibit

focal amplification of CCND1. Note that gains of 11q22 are also

seen for SCC15.

(TIF)

Table S1 Differentially Expressed Genes in the Expres-
sion Subtypes. The R package samr was used to identify genes

that were differentially expressed when each subtype was

compared to all other subtypes combined based on an FDR

threshold of q= .01.

(XLSX)

Table S2 Biological Characteristics of Expression Sub-
types. Table S1 lists genes that were differentially expressed when

each subtype was compared to all other subtypes combined.

Biological characteristics and molecular pathways representative

of the highly expressed genes were then identified, as were other

relevant genes (e.g. growth/transcription factors).

(DOCX)

Table S3 Comparison of Expression Patterns in the
Expression Subtypes and Time Course Data from the
Air Liquid Interface Model. Correlation-based distances

between class centroids for the expression subtypes and time

course centroids for the air liquid interface model show that the

most similar expression subtype changes over time, with basal

being the most similar at Day 3. Distance is equal to 1 minus the

Pearson correlation coefficient of the centroids of interest.

(DOCX)

Table S4 Regions Exhibiting Recurrent Copy Number
Gain and Loss Events. DiNAMIC was used to assess the

statistical significance of recurrent copy number gain and loss

events. Confidence intervals for the copy number events were also

computed. For each event, ‘‘Marker’’ refers to the most significant

copy number locus, while ‘‘Left’’ and ‘‘Right’’ refer to the

boundaries of the associated confidence interval. Positions are

hg18 genomic coordinates.

(XLSX)

Table S5 Expression Subtypes Exhibit Different Copy
Number Patterns in Regions of Chromosomal Gain and
Loss. Unadjusted Kruskal-Wallis Test p-values are given for

associations between expression subtype and subject-specific mean

copy numbers in the confidence intervals containing the five most

significant gain and loss events. Adjusted p-values were computed

using a Bonferroni adjustment (ten tests).

(DOCX)

Table S6 Expression Subtypes Exhibit Different Ex-
pression Patterns of Oncogenes in Chromosome 3q.
Unadjusted Kruskal-Wallis Test p-values are given for associations

between subject-specific expression of TP63, PIK3CA, and SOX2

and expression subtype. Adjusted p-values were computed using

a Bonferroni adjustment (three tests).

(DOCX)

Table S7 Overall Association of CCND1 Gains and
CDKN2A Losses. Two-by-two table illustrating CCND1 gains

and CDKN2A losses, together with Fisher’s Exact Test p-value.

(DOCX)

Table S8 Predicted Expression Subtypes in Head and
Neck Cancer Cell Lines. Predicted gene expression subtypes in

head and neck cancer samples of the Cancer Cell Line

Encyclopedia obtained using the centroid predictor described in

Methods.

(DOCX)

Table S9 Summary of Datasets. Summary of data and tissue

types, sample sizes, and platforms for all datasets discussed herein.

(DOCX)

Table S10 Clinical Data by Subject. Clinical data for each

of the 138 subjects that have expression subtypes.

(XLSX)
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