233 research outputs found

    Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.)

    Get PDF
    Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth

    The C313Y Piedmontese mutation decreases myostatin covalent dimerisation and stability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myostatin is a key negative regulator of muscle growth and development, whose activity has important implications for the treatment of muscle wastage disorders. Piedmontese cattle display a double-muscled phenotype associated with the expression of C313Y mutant myostatin. <it>In vivo</it>, C313Y myostatin is proteolytically processed, exported and circulated extracellularly but fails to correctly regulate muscle growth. The C313Y mutation removes the C313-containing disulphide bond, an integral part of the characteristic TGF-β cystine-knot structural motif.</p> <p>Results</p> <p>Here we present <it>in vitro </it>analysis of the structure and stability of the C313Y myostatin protein that reveals significantly decreased covalent dimerisation for C313Y myostatin accompanied by a loss of structural stability compared to wild type. The C313Y myostatin growth factor, processed from full length precursor protein, fails to inhibit C2C12 myoblast proliferation in contrast to wild type myostatin. Although structural modeling shows the substitution of tyrosine causes structural perturbation, biochemical analysis of additional disulphide mutants, C313A and C374A, indicates that an intact cystine-knot motif is a major determinant in myostatin growth factor stability and covalent dimerisation.</p> <p>Conclusions</p> <p>This research shows that the cystine-knot structure is important for myostatin dimerisation and stability, and that disruption of this structural motif perturbs myostatin signaling.</p

    Morphological differences between wild and farmed Mediterranean fish

    Get PDF
    Gilthead seabream (Sparus aurata L.) and European seabass (Dicentrarchus labrax L.) are important commercial marine fish species both for aquaculture and fisheries in the Mediterranean. It is known that farmed individuals escape from farm facilities, but the extent of escape events is not easy to report and estimate because of the difficulty to distinguish between wild and farmed individuals. In this study, significant differences provided through morphometry evidence that the cranial and body regions of seabream and seabass are different regarding their farm or wild origin at different scales. Morphological variations have been shown to be a valuable tool for describing changes in shape features. Therefore, the biomass contribution of escapees to local habitats could be determined by identifying escaped individuals from fisheries landings as a first step to assess the potential negative effects of fish farm escapees on the environment, and their influence on wild stocks and local fisheries.This study was financed by the EU-proyect ‘‘PreventEscape’’ (7th Framework European Commission, num. 226885; http://www.preventescape.eu/)
    corecore