27 research outputs found
Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species
Funding Information: We thank Prof. Jian-Yun Zhuang for his advice on nomenclatural matters. We thank Dr. Alexander Idnurm for his kindly providing the sequences and informations of strain IAM13481 and his critical comments for this manuscript, Dr. Aleksey Kachalkin for his sharing the physilogical data of strain KBP Y-5548 and Masako Takashima for her sharing the physilogical data of strain TY-217. We also thank Ana Pontes and Cl?udia Carvalho for editing illustrations of Kondoa myxariophila and for ITS sequencing, respectively. This study was supported by grants No. 31570016 from the National Natural Science Foundation of China (NSFC) and national project on scientific groundwork No. 2014FY210400 from the Ministry of Science and Technology of China. The authors are solely responsible for the content of this work.Nearly 500 basidiomycetous yeast species were accepted in the latest edition of The Yeasts: A Taxonomic Study published in 2011. However, this number presents only the tip of the iceberg of yeast species diversity in nature. Possibly more than 99 % of yeast species, as is true for many groups of fungi, are yet unknown and await discovery. Over the past two decades nearly 200 unidentified isolates were obtained during a series of environmental surveys of yeasts in phyllosphere and soils, mainly from China. Among these isolates, 107 new species were identified based on the phylogenetic analyses of nuclear ribosomal DNA (rDNA) [D1/D2 domains of the large subunit (LSU), the small subunit (SSU), and the internal transcribed spacer region including the 5.8S rDNA (ITS)] and protein-coding genes [both subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1) and the mitochondrial gene cytochrome b (CYTB)], and physiological comparisons. Forty-six of these belong to 16 genera in the Tremellomycetes (Agaricomycotina). The other 61 are distributed in 26 genera in the Pucciniomycotina. Here we circumscribe eight new genera, three new families and two new orders based on the multi-locus phylogenetic analyses combined with the clustering optimisation analysis and the predicted similarity thresholds for yeasts and filamentous fungal delimitation at genus and higher ranks. Additionally, as a result of these analyses, three new combinations are proposed and 66 taxa are validated.publishersversionpublishe
Derxomyces ovatus Q. M. Wang, F. Y. Bai & A. H. Li 2020, sp. nov.
<p> <i>Derxomyces ovatus</i> Q.M. Wang, F.Y. Bai & A.H. Li <i>sp. nov.</i> MycoBank MB828780. Fig. 10E, F.</p> <p> <i>Etymology</i>: the specific epithet <i>ovatus</i> refers to the ovoid vegetative cells of the type strain.</p> <p> <i>Culture characteristics</i>: In YM broth, after 7 d at 17 °C, cells are ovoid or ellipsoidal, 2.0– 5.4 × 3.8– 7.7 μm and single, budding is polar (Fig. 10E), a sediment is present. After 1 mo at 17 °C, a ring and a sediment are present. On YM agar, after 1 mo at 17 °C, the streak culture is yellow, butyrous, smooth and dull. The margin is entire. In Dalmau plate culture on corn meal agar, pseudohyphae are formed. Sexual structures are not observed on YM, PDA, V8 and CM agar. Ballistoconidia are ellipsoidal to napiform, 1.8 –3.6 × 3.0–4.5 μm (Fig. 10F).</p> <p> <i>Physiological and biochemical characteristics</i>: Glucose fermentation is absent. Glucose, galactose, L-sorbose (delayed and weak), sucrose, maltose, cellobiose, trehalose, melibiose, raffinose, melezitose, inulin (delayed and weak), soluble starch (weak), D-xylose, Larabinose, L-rhamnose, ethanol (delayed and weak), galactitol, Dmannitol, D-glucitol, Methyl-α- D-glucoside, salicin (delayed and weak), succinate and myo-inositol are assimilated as sole carbon sources. Lactose, D-arabinose, D-ribose, D-glucosamine, N-Acetyl-D-glucosamine, methanol, glycerol, erythritol, ribitol, DL-lactate, citrate and hexadecane are not assimilated. Ammonium sulfate, potassium nitrate (delayed and weak) and L-lysine are assimilated as sole nitrogen sources. Sodium nitrite, ethylamine hydrochloride and cadaverine dihydrochloride are not assimilated. Maximum growth temperature is 28 °C. Growth in vitamin-free medium is netative. Starch-like substances are not produced. Growth on 50 % (w/w) glucose-yeast extract agar is negative. Urease activity is positive. Diazonium Blue B reaction is positive.</p> <p> Physiologically, <i>De. ovatus</i> differs from the closely related species <i>De. taiwanicus</i>. in its ability to assimilate myo-inositol (Table S1.11).</p> <p> <i>Typus</i>: <b>China</b>, Simao county, Yunnan province, obtained from a leaf of an unidentified plant, Nov. 2006, Q.-M. Wang (<b>holotype</b> CGMCC 2.3572 T preserved in a metabolically inactive state, ex-type CBS 15654 = SM32.2).</p>Published as part of <i>Li, A. - H., Yuan, F. - X., Groenewald, M., Bensch, K., Yurkov, A. M., Li, K., Han, P. - J., Guo, L. - D., Aime, M. C., Sampaio, J. P., Jindamorakot, S., Turchetti, B., Inacio, J., Fungsin, B., Wang, Q. - M. & Bai, F. - Y., 2020, Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species, pp. 17-140 in Studies In Mycology 96</i> on page 98, DOI: 10.1016/j.simyco.2020.01.002, <a href="http://zenodo.org/record/10497182">http://zenodo.org/record/10497182</a>
Derxomyces napiformis Q. M. Wang, F. Y. Bai & A. H. Li 2020, sp. nov.
<p> <i>Derxomyces napiformis</i> Q.M. Wang, F.Y. Bai & A.H. Li <i>sp. nov.</i> MycoBank MB828775. Fig. 9K, L.</p> <p> <i>Etymology</i>: the specific epithet <i>napiformis</i> refers to the napiform ballistoconidia of the type strain.</p> <p> <i>Culture characteristics</i>: In YM broth, after 7 d at 17 °C, cells are ellipsoidal to ovoid, 1.5– 4.3 × 5.0–8.6 μm and single, budding is polar (Fig. 9K), a sediment is formed. After 1 mo at 17 °C, a ring and sediment are present. On YM agar, after 1 mo at 17 °C, the streak culture is yellowish-cream, butyrous, slightly wrinkled and dull. The margin is entire. In Dalmau plate culture on corn meal agar, pseudohyphae are formed. Sexual structures are not observed on YM, PDA, V8 and CM agar. Ballistoconidia are ellipsoidal to napiform, 2.9– 3.6 × 4.2– 4.6 μm (Fig. 9L).</p> <p> <i>Physiological and biochemical characteristics</i>: Glucose fermentation is absent. Glucose, galactose, sucrose, maltose, cellobiose, trehalose, melibiose, raffinose, melezitose, D-xylose, Larabinose, D-arabinose, L-rhamnose, Methyl-α- D-glucoside, succinate and myo-inositol are assimilated as sole carbon sources. L-sorbose, lactose, inulin, soluble starch, D-ribose, Dglucosamine, methanol, ethanol, glycerol, erythritol, ribitol, galactitol, D-mannitol, D-glucitol, salicin, DL-lactate, citrate and hexadecane are not assimilated. Ammonium sulfate, L-lysine, ethylamine hydrochloride and cadaverine dihydrochloride are assimilated as sole nitrogen sources. Potassium nitrate and sodium nitrite are not assimilated. Maximum growth temperature is 28 °C. Growth in vitamin-free medium is negative. Starch-like substances are not produced. Growth on 50 % (w/w) glucose-yeast extract agar is negative. Urease activity is positive. Diazonium Blue B reaction is positive.</p> <p> Physiologically, <i>De. napiformis</i> differs from its closely related species <i>De. bifurcus</i> in its inability to assimilate inulin, D-ribose and potassium nitrate and its ability to assimilate Methyl-α- Dglucoside, succinate and myo-inositol (Table S1.11).</p> <p> <i>Typus</i>: <b>China</b>, Taiwan province, obtained from a leaf of an unidentified plant, Aug. 2009, Q.-M. Wang (<b>holotype</b> CGMCC 2.4446 T preserved in a metabolically inactive state, ex-type CBS 15748 = TW1.1F028).</p>Published as part of <i>Li, A. - H., Yuan, F. - X., Groenewald, M., Bensch, K., Yurkov, A. M., Li, K., Han, P. - J., Guo, L. - D., Aime, M. C., Sampaio, J. P., Jindamorakot, S., Turchetti, B., Inacio, J., Fungsin, B., Wang, Q. - M. & Bai, F. - Y., 2020, Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species, pp. 17-140 in Studies In Mycology 96</i> on page 95, DOI: 10.1016/j.simyco.2020.01.002, <a href="http://zenodo.org/record/10497182">http://zenodo.org/record/10497182</a>
Derxomyces cylindricus F. Y. Bai & Q. M. Wang 2020, sp. nov.
<p> <i>Derxomyces cylindricus</i> F.Y. Bai, Q.M. Wang & M. Takash. ex F.Y. Bai & Q.M. Wang, <i>sp. nov.</i> MycoBank MB831863.</p> <p>For description see Int. J. Syst. Evol. Microbiol. 54(5): 1879 (2004).</p> <p> <i>Holotype:</i> CGMCC AS 2.2308 (preserved in a metabolically inactive state).</p> <p> <i>Synonyms</i>: <i>Bullera cylindrica</i> F.Y. Bai, Q.M. Wang & M. Takash., Int. J. Syst. Evol. Microbiol. 54(5): 1879 (2004), <i>nom. inval.</i>, Art. 40.7 (Shenzhen).</p> <p> = <i>Derxomyces cylindrica</i> F.Y. Bai, Q.M. Wang & M. Takash. ex F.Y. Bai & Q.M. Wang, FEMS Yeast Res. 8(5): 804 (2008), <i>nom. inval.</i>, Art. 40.7 (Shenzhen).</p>Published as part of <i>Li, A. - H., Yuan, F. - X., Groenewald, M., Bensch, K., Yurkov, A. M., Li, K., Han, P. - J., Guo, L. - D., Aime, M. C., Sampaio, J. P., Jindamorakot, S., Turchetti, B., Inacio, J., Fungsin, B., Wang, Q. - M. & Bai, F. - Y., 2020, Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species, pp. 17-140 in Studies In Mycology 96</i> on page 133, DOI: 10.1016/j.simyco.2020.01.002, <a href="http://zenodo.org/record/10497182">http://zenodo.org/record/10497182</a>
Leucosporidium intermedium M. Groenew. & Q. M. Wang 2020, comb. nov.
<p> <i>Leucosporidium intermedium</i> (Nakase & M. Suzuki) M. Groenew. & Q.M. Wang, <i>comb. nov.</i> MycoBank MB831754.</p> <p> <i>Basionym</i>: <i>Bullera intermedia</i> Nakase & M. Suzuki, J. Gen. Appl. Microbiol. 32(2): 150 (1986).</p> <p> <i>Synonyms</i>: <i>Sporobolomyces intermedius</i> (Nakase & M. Suzuki) Nakase & M. Suzuki, J. Gen. Appl. Microbiol. 33(2): 193 (1987). = <i>Bensingtonia intermedia</i> (Nakase & M. Suzuki) Nakase & Boekhout, J. Gen. Appl. Microbiol. 34(3): 435 (1988).</p> <p> = <i>Leucosporidium intermedium</i> (Nakase & M. Suzuki) V. de García <i>et al.</i>, FEMS Yeast Res. 15: 9 (2015), <i>nom. inval.</i>, Art. 41.5 (Shenzhen).</p>Published as part of <i>Li, A. - H., Yuan, F. - X., Groenewald, M., Bensch, K., Yurkov, A. M., Li, K., Han, P. - J., Guo, L. - D., Aime, M. C., Sampaio, J. P., Jindamorakot, S., Turchetti, B., Inacio, J., Fungsin, B., Wang, Q. - M. & Bai, F. - Y., 2020, Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species, pp. 17-140 in Studies In Mycology 96</i> on page 134, DOI: 10.1016/j.simyco.2020.01.002, <a href="http://zenodo.org/record/10497182">http://zenodo.org/record/10497182</a>
Teunia Q. M. Wang & F. Y. Bai 2020, gen. nov.
<p> <i>Teunia</i> Q.M. Wang & F.Y. Bai <i>gen. nov.</i> MycoBank MB828751.</p> <p> <i>Etymology</i>: the genus is named in honour of Dr. Teun Boekhout for his contributions to yeast taxonomy.</p> <p> This genus is proposed for the clade represented by <i>Cryptococcus cuniculi</i>, which clustered with <i>Fonsecazyma tronadorensis</i> (<i>Cryptococcus tronadorensis</i>), <i>Fonsecazyma betulae</i> (<i>Kwoniella betulae</i>) and three new species represented by CGMCC 2.4450, CGMCC 2.5648 and CGMCC 2.3835, respectively. Member of the <i>Cryptococcaceae</i> (<i>Tremellales</i>). The genus is mainly circumscribed by the phylogenetic analysis of the seven genes dataset, in which it occurred as a well supported clade within <i>Cryptococcaceae</i> (Fig. 2).</p> <p>Sexual reproduction not known. Colonies cream to yellow, butyrous to mucoid. Budding cells present. Pseudohyphae and hyphae are not produced. Ballistoconidia are not formed.</p> <p> <i>Type species</i>: <i>Teunia korlaensis</i> Q.M. Wang, F.Y. Bai & A.H. Li.</p>Published as part of <i>Li, A. - H., Yuan, F. - X., Groenewald, M., Bensch, K., Yurkov, A. M., Li, K., Han, P. - J., Guo, L. - D., Aime, M. C., Sampaio, J. P., Jindamorakot, S., Turchetti, B., Inacio, J., Fungsin, B., Wang, Q. - M. & Bai, F. - Y., 2020, Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species, pp. 17-140 in Studies In Mycology 96</i> on page 86, DOI: 10.1016/j.simyco.2020.01.002, <a href="http://zenodo.org/record/10497182">http://zenodo.org/record/10497182</a>
Saitozyma ninhbinhensis Yurkov 2020, comb. nov.
<p> <i>Saitozyma ninhbinhensis</i> (D.T. Luong, M. Takash., Dung & Nakase) Yurkov, <b> <i>comb.</i> nov.</b> MycoBank MB831700.</p> <p>For description see J. Gen. Appl. (Special Issue) Biotechnol.: 36 (2002).</p> <p> <i>Holotype:</i> VTCC 10184 (preserved in a metabolically inactive state).</p> <p> <i>Basionym</i>: <i>Bullera ninhbinhensis</i> D.T. Luong, M. Takash., Ty, Dung & Nakase, Journal of Genetics and Applications (Special Issue) Biotechnology: 36 (2002).</p> <p> <i>Synonyms</i>: <i>Saitozyma ninhbinhensis</i> D.T. Luong, M. Takash., Ty, Dung & Nakase ex Yurkov, Stud. Mycol. 81: 134 (2015), <i>nom. inval.</i>, Art. 41.5 (Shenzhen).</p>Published as part of <i>Li, A. - H., Yuan, F. - X., Groenewald, M., Bensch, K., Yurkov, A. M., Li, K., Han, P. - J., Guo, L. - D., Aime, M. C., Sampaio, J. P., Jindamorakot, S., Turchetti, B., Inacio, J., Fungsin, B., Wang, Q. - M. & Bai, F. - Y., 2020, Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: Proposal of two new orders, three new families, eight new genera and one hundred and seven new species, pp. 17-140 in Studies In Mycology 96</i> on page 137, DOI: 10.1016/j.simyco.2020.01.002, <a href="http://zenodo.org/record/10497182">http://zenodo.org/record/10497182</a>