200 research outputs found

    The Ethanol Extract of Fructus trichosanthis Promotes Fetal Hemoglobin Production via p38 MAPK Activation and ERK Inactivation in K562 Cells

    Get PDF
    Pharmacological stimulation of fetal hemoglobin (HbF) expression may be a promising approach for the treatment of beta-thalassemia. In this study, the effects of Fructus trichosanthis (FT) were investigated in human erythroleukemic K562 cells for their gamma-globin mRNA and HbF-induction activities. The role of signaling pathways, including extracellular regulated protein kinase (ERK) and p38 mitogen-activated protein kinase (MAPK), was also investigated. It was found that the ethanol extract of FT significantly increased gamma-globin mRNA and HbF levels, determined by real-time reverse transcription polymerase chain reaction and enzyme linked immunosorbent assay, respectively, in dose- and time-dependent manner. Total Hb (THb) levels were also elevated in the concentrations without cytotoxicity (<80 μg mL−1). Pre-treatment with p38 MAPK inhibitor SB203580 blocked the stimulatory effects of FT extract in total and HbF induction. In contrast, no change in HbF was observed when treated with ERK inhibitor PD98059. Furthermore, FT ethanol extract activated p38 MAPK and inhibited ERK signaling pathways in K562 cells, as revealed in western blotting analysis. In addition, SB203580 significantly abolished p38 MAPK activation when the cells were treated with FT. In summary, the ethanol extract of FT was found to be a potent inducer of HbF synthesis in K562 cells. The present data delineated the role of ERK and p38 MAPK signaling as molecular targets for pharmacologic stimulation of HbF production upon FT treatment

    Use of a Human Skin-Grafted Nude Mouse Model for the Evaluation of Topical Retinoic Acid Treatment

    Get PDF
    Cultured human keratinocytes and artificial dermal equivalents maintained in vitro do not perfectly mimic the terminal differentiation patterns and response to drugs observed in intact human skin. We have made use of human skin grafted onto nude mice to demonstrate that such grafts maintain the pattern of pharmacologic responsiveness to all-trans retinoic acid previously reported in human subjects. The use of a quantitative polymerase chain reaction method to measure induction of a retinoic acid responsive gene, cytoplasmic retinoic acid binding protein II, has made it possible to generate objective data suitable for investigations of drug efficacy. This method of using grafted human skin has potential broad applicability for investigation of topical drugs in a number of therapeutic fields

    Osteoprotective effects of Fructus Ligustri Lucidi aqueous extract in aged ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Fructus Ligustri Lucidi </it>(FLL) is a commonly used herb for treating bone disorders in Chinese medicine. The present study investigates the anti-osteoporotic activity of FLL aqueous extract in the model of postmenopausal bone loss in aged ovariectomized (OVX) female rats.</p> <p>Methods</p> <p>After eight weeks of treatment of FLL or water, the lumbar spine was scanned by peripheral quantitative computed tomography (pQCT). Effects of FLL water extract on osteogenic and adipogenic differentiations in rat mesenchymal stem cells (MSCs) were assessed by biochemical methods and staining.</p> <p>Results</p> <p>FLL aqueous extract significantly inhibited bone mineral density (BMD) loss in total, trabecular and cortical bones without affecting body weight and uterus wet weight. FLL extract significantly promoted osteogenesis and suppressed adipogenesis in MSCs as indicated by the elevated alkaline phosphatase activity, calcium deposition levels and decreased adipocyte number in a dose-dependent manner without cytotoxic effects. Real-time PCR analysis revealed significant increase of osteoprotegerin (OPG)-to-receptor activator for nuclear factor-κB ligand (RANKL) mRNA, indicating a decrease in osteoclastogenesis.</p> <p>Conclusion</p> <p>The present study demonstrates the osteoprotective effects of FLL aqueous extract on aged OVX rats, stimulation of osteogenesis, inhibition of adipogenesis and osteoclastogenesis in MSCs.</p

    Type 2 innate immunity drives distinct neonatal immune profile conducive for heart regeneration.

    Get PDF
    Neonatal immunity is functionally immature and skewed towards a T 2-driven, anti-inflammatory profile. This neonatal immunotolerance is partly driven by the type 2 cytokines: interleukin-4 (IL-4) and interleukin-13 (IL-13). Studies on neonatal cardiac regeneration reveal the beneficial role of an anti-inflammatory response in restoring cardiac function after injury. However, the role of an imbalanced immune repertoire observed in neonates on tissue regeneration is poorly understood; specifically, whether IL-4 and IL-13 actively modulate neonatal immunity during cardiac injury. Neonatal mice lacking IL-4 and IL-13 (DKOs) examined at 2 days after birth exhibited reduced anti-inflammatory immune populations with basal cardiac immune populations like adult mice. Examination of neonates lacking IL-4 and IL-13 at 2 days post cardiac ischemic injury, induced on the second day after birth, showed impaired cardiac function compared to their control counterparts. Treatment with either IL-4 or IL-13 cytokine during injury restored both cardiac function and immune population profiles in knockout mice. Examination of IL-4/IL-13 downstream pathways revealed the role of STAT6 in mediating the regenerative response in neonatal hearts. As IL-4/IL-13 drives polarization of alternatively activated macrophages, we also examined the role of IL-4/IL-13 signaling within the myeloid compartment during neonatal cardiac regeneration. Injury of IL-4Rα myeloid specific knockout neonates 2 days after birth revealed that loss of IL-4/IL-13 signaling in macrophages alone was sufficient to impair cardiac regeneration. Our results confirm that the T 2 cytokines: IL-4 and IL-13, which skews neonatal immunity to a T 2 profile, are necessary for maintaining and mediating an anti-inflammatory response in the neonatal heart, in part through the activation of alternatively activated macrophages, thereby permitting a niche conducive for regeneration. [Abstract copyright: © The author(s).

    CpG-induced tyrosine phosphorylation occurs via a TLR9-independent mechanism and is required for cytokine secretion

    Get PDF
    Toll-like receptors (TLRs) recognize molecular patterns preferentially expressed by pathogens. In endosomes, TLR9 is activated by unmethylated bacterial DNA, resulting in proinflammatory cytokine secretion via the adaptor protein MyD88. We demonstrate that CpG oligonucleotides activate a TLR9-independent pathway initiated by two Src family kinases, Hck and Lyn, which trigger a tyrosine phosphorylation–mediated signaling cascade. This cascade induces actin cytoskeleton reorganization, resulting in cell spreading, adhesion, and motility. CpG-induced actin polymerization originates at the plasma membrane, rather than in endosomes. Chloroquine, an inhibitor of CpG-triggered cytokine secretion, blocked TLR9/MyD88-dependent cytokine secretion as expected but failed to inhibit CpG-induced Src family kinase activation and its dependent cellular responses. Knock down of Src family kinase expression or the use of specific kinase inhibitors blocked MyD88-dependent signaling and cytokine secretion, providing evidence that tyrosine phosphorylation is both CpG induced and an upstream requirement for the engagement of TLR9. The Src family pathway intersects the TLR9–MyD88 pathway by promoting the tyrosine phosphorylation of TLR9 and the recruitment of Syk to this receptor

    JCM-16021, a Chinese Herbal Formula, Attenuated Visceral Hyperalgesia in TNBS-Induced Postinflammatory Irritable Bowel Syndrome through Reducing Colonic EC Cell Hyperplasia and Serotonin Availability in Rats

    Get PDF
    The present study aimed to investigate the analgesic effect of JCM-16021, a revised traditional Chinese herbal formula, on postinflammatory irritable bowel syndrome (PI-IBS) in rats. The trinitrobenzene sulfonic (TNBS) acid-induced PI-IBS model rats were orally administrated with different doses of JCM-16021 (1.2, 2.4, and 4.8 g/kg/d) for 14 consecutive days. The results showed that JCM-16021 treatment dose-dependently attenuated visceral hyperalgesia in PI-IBS rats. Further, the colonic enterochromaffin (EC) cell number, serotonin (5-HT) content, tryptophan hydroxylase expression, and mechanical-stimuli-induced 5-HT release were significantly ameliorated. Moreover, the decreased levels of mucosal cytokines in PI-IBS, especially the helper T-cell type 1- (Th1-) related cytokine TNF-α, were also elevated after JCM-16021 treatment. These data demonstrate that the analgesic effect of JCM-16021 on TNBS-induced PI-IBS rats may be medicated via reducing colonic EC cell hyperplasia and 5-HT availability

    Genome maps across 26 human populations reveal population-specific patterns of structural variation.

    Get PDF
    Large structural variants (SVs) in the human genome are difficult to detect and study by conventional sequencing technologies. With long-range genome analysis platforms, such as optical mapping, one can identify large SVs (&gt;2 kb) across the genome in one experiment. Analyzing optical genome maps of 154 individuals from the 26 populations sequenced in the 1000 Genomes Project, we find that phylogenetic population patterns of large SVs are similar to those of single nucleotide variations in 86% of the human genome, while ~2% of the genome has high structural complexity. We are able to characterize SVs in many intractable regions of the genome, including segmental duplications and subtelomeric, pericentromeric, and acrocentric areas. In addition, we discover ~60 Mb of non-redundant genome content missing in the reference genome sequence assembly. Our results highlight the need for a comprehensive set of alternate haplotypes from different populations to represent SV patterns in the genome

    Type 2 innate immunity drives distinct neonatal immune profile conducive for heart regeneration

    Get PDF
    Aims: Neonatal immunity is functionally immature and skewed towards a TH2-driven, anti-inflammatory profile. This neonatal immunotolerance is partly driven by the type 2 cytokines: interleukin-4 (IL-4) and interleukin-13 (IL-13). Studies on neonatal cardiac regeneration reveal the beneficial role of an anti-inflammatory response in restoring cardiac function after injury. However, the role of an imbalanced immune repertoire observed in neonates on tissue regeneration is poorly understood; specifically, whether IL-4 and IL-13 actively modulate neonatal immunity during cardiac injury. Methods and results: Neonatal mice lacking IL-4 and IL-13 (DKOs) examined at 2 days after birth exhibited reduced anti-inflammatory immune populations with basal cardiac immune populations like adult mice. Examination of neonates lacking IL-4 and IL-13 at 2 days post cardiac ischemic injury, induced on the second day after birth, showed impaired cardiac function compared to their control counterparts. Treatment with either IL-4 or IL-13 cytokine during injury restored both cardiac function and immune population profiles in knockout mice. Examination of IL-4/IL-13 downstream pathways revealed the role of STAT6 in mediating the regenerative response in neonatal hearts. As IL-4/IL-13 drives polarization of alternatively activated macrophages, we also examined the role of IL-4/IL-13 signaling within the myeloid compartment during neonatal cardiac regeneration. Injury of IL-4Rα myeloid specific knockout neonates 2 days after birth revealed that loss of IL-4/IL-13 signaling in macrophages alone was sufficient to impair cardiac regeneration. Conclusions: Our results confirm that the TH2 cytokines: IL-4 and IL-13, which skews neonatal immunity to a TH2 profile, are necessary for maintaining and mediating an anti-inflammatory response in the neonatal heart, in part through the activation of alternatively activated macrophages, thereby permitting a niche conducive for regeneration
    corecore