535 research outputs found

    A bodhisattva-spirit-oriented counselling framework: inspired by VimalakΔ«rti wisdom

    Get PDF

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Identification of tumor suppressive activity by irradiation microcell-mediated chromosome transfer and involvement of alpha B-crystallin in nasopharyngeal carcinoma

    No full text
    In previous studies, we successfully refined nasopharyngeal carcinoma (NPC) critical regions (CRs) mapping to chromosome 11q13 and 11q22-23. The chromosome 11 fragment containing the 1.8 Mb NPC CR at 11q13 (CRI), the CR at 11q22.3 mapped near D11S2000 (CR2), part of the CR at 11q23.1-11q23.2 overlap in with DIIS1300 and DlIS1391 (CR3), and the CR at cell adhesion molecule 1 (CADM1) locus (CR4), was chosen as the chromosome 11 donor cell line for the present study. Gamma irradiation was applied to cleave this truncated chromosome into smaller fragments and a new panel of donor cells containing further deleted fragments was produced. Subdones XMCH3.2 and XMCH3.4 were chosen for subsequent transfer to HONE1 cells; each contains a single copy of deleted chromosome 11 fragment with or without CR2 and the THY1 locus, previously shown to be involved in NPC. Both resultant chromosome 11 fragments in XMCH3.2 and XMCH3.4 caused tumor suppression. The association of alpha B-crystallin (CRYAB), a gene identified as being differentially expressed by gene profiling of NPC and an immortalized nasopharyngeal epithelial cell line, and which is located near CR3, was found to be associated with tumor suppression in all the tumor-suppressive hybrids. In addition, the expression level of this gene was down-regulated in the 7 NPC cell lines and in 5 out of 14 normal/tumor tissue pairs in the present study. Both promoter hypermethylation and allelic loss may be involved in the inactivation of this gene, suggesting its possible role in NPC development. (C) 2007 Wiley-Liss, Inc

    Monochromosome transfer and microarray analysis identify a critical tumor-suppressive region mapping to chromosome 13q14 and THSD1 in esophageal carcinoma

    No full text
    Loss of chromosome 13q regions in esophageal squamous cell carcinoma (ESCC) is a frequent event. Monochromosome transfer approaches provide direct functional evidence for tumor suppression by chromosome 13 in SLMT-1, an ESCC cell line, and identify critical regions at 13q12.3, 13q14.11, and 13q14.3. Differential gene expression profiles of three tumor-suppressing microcell hybrids (MCH) and their tumorigenic parental SLMT-1 cell line were revealed by competitive hybridization using 19k cDNA oligonucleolide microarrays. Nine candidate 13q14 tumor-suppressor genes (TSG), including RB1, showed down-regulation in SLMT-1, compared with NE1, an immortalized normal esophageal epithelial cell line; their average gene expression was restored in MCHs compared with SLMT-1. Reverse transcription-PCR validated gene expression levels in MCHs and a panel of ESCC cell lines. Results suggest that the tumor-suppressing effect is not attributed to RB1, but instead likely involves thrombospondin type I domain-containing 1 (THSD1), a novel candidate TSG mapping to 13q14. Quantitative reverse transcription-PCR detected down-regulation of THSD1 expression in 100\% of ESCC and other cancer cell lines. Mechanisms for THSD1 silencing in ESCC involved loss of heterozygosity and promoter hypermethylation, as analyzed by methylation-specific PCR and clonal bisulfite sequencing. Transfection of wild-type THSD1 into SLMT-1 resulted in significant reduction of colony-forming ability, hence providing functional evidence for its growth-suppressive activity. These findings suggest that THSD1 is a good candidate TSG

    CD44+ Cancer Stem-Like Cells in EBV-Associated Nasopharyngeal Carcinoma

    Get PDF
    <div><p>Nasopharyngeal carcinoma (NPC) is a unique EBV-associated epithelial malignancy, showing highly invasive and metastatic phenotype. Despite increasing evidence demonstrating the critical role of cancer stem-like cells (CSCs) in the maintenance and progression of tumors in a variety of malignancies, the existence and properties of CSC in EBV-associated NPC are largely unknown. Our study aims to elucidate the presence and role of CSCs in the pathogenesis of this malignant disease. Sphere-forming cells were isolated from an EBV-positive NPC cell line C666-1 and its tumor-initiating properties were confirmed by <em>in vitro</em> and <em>in vivo</em> assays. In these spheroids, up-regulation of multiple stem cell markers were found. By flow cytometry, we demonstrated that both CD44 and SOX2 were overexpressed in a majority of sphere-forming C666-1 cells. The CD44+SOX2+ cells was detected in a minor population in EBV-positive xenografts and primary tumors and considered as potential CSC in NPC. Notably, the isolated CD44+ NPC cells were resistant to chemotherapeutic agents and with higher spheroid formation efficiency, showing CSC properties. On the other hand, microarray analysis has revealed a number of differentially expressed genes involved in transcription regulation (e.g. <em>FOXN4</em>, <em>GLI1</em>), immune response (<em>CCR7</em>, <em>IL8</em>) and transmembrane transport (e.g. <em>ABCC3</em>, <em>ABCC11</em>) in the spheroids. Among these genes, increased expression of CCR7 in CD44+ CSCs was confirmed in NPC xenografts and primary tumors. Importantly, blocking of CCR7 abolished the sphere-forming ability of C666-1 <em>in vitro</em>. Expression of CCR7 was associated with recurrent disease and distant metastasis. The current study defined the specific properties of a CSC subpopulation in EBV-associated NPC. Our findings provided new insights into developing effective therapies targeting on CSCs, thereby potentiating treatment efficacy for NPC patients.</p> </div
    • …
    corecore