851 research outputs found

    Additively Manufactured RCS for Small Satellites and Landers

    Get PDF
    After a fifty year absence, NASA’s return to the lunar surface under the Artemis Program – for long term human exploration and utilization – is driving commercial and academic opportunities for small satellite and small lander platforms (e.g., Commercial Lunar Payload Services program – CLPS). Bipropellant thrusters are a reliable, low risk, and flight proven method for the propulsion and attitude control that is required for complex maneuvers such entry, descent, and landing (EDL) or in-space proximity operations. However, due to the increasingly competitive commercial spaceflight market in the last decade, satellite subsystems must also be affordable to buy their way into the final mission design and engineering solution. Therefore starting in 2019, and based off prior satellite integration work, Aerojet Rocketdyne (AR) undertook an advanced propulsion development effort to combine modern metal additive manufacturing (AM) techniques with thrust scalable hypergolic MON-25 propulsion technology to create a high performance and fully integrated (i.e., multiple thrusters integrated into a single package) reaction control system (RCS) at a fraction of the production cost when compared to the heritage designs that are assembled from individual thrusters. The point-of-departure for the RCS design comes from a new line of additively manufactured thrusters that stably burn volatile MON-25 oxidizer with monomethylhydrazine (MMH) fuel at thrust levels of 5 lbf and 100 lbf. Cost at the subsystem level is lowered by the AM integration of parts and functions which reduces the build of materials, touch labor, and assembly time. In addition, AM allows the design to be adaptable to changing requirements such as the number of thrusters, orientation, and thrust level. Cost at the satellite level is reduced by leveraging MON-25’s lower freezing point of -55 °C (compared to traditional dinitrogen tetroxide oxidizer) to minimize mass, thermal, and power requirements while operating in deep-space environments. In addition, thruster operation at the equal volume mixture ratio for MMH/MON-25 allows for a modular approach to tank design and a predictable center of gravity during maneuvering. This paper provides an overview of the ISE-5 and the ISE-100 MON-25 thruster technology that powers the integrated designs as well as the development progress of the AM RCS concept itself. This includes reduction to practice activities such as proof-of-concept AM material test demonstrators and water flow test units

    Model validation for a noninvasive arterial stenosis detection problem

    Get PDF
    Copyright @ 2013 American Institute of Mathematical SciencesA current thrust in medical research is the development of a non-invasive method for detection, localization, and characterization of an arterial stenosis (a blockage or partial blockage in an artery). A method has been proposed to detect shear waves in the chest cavity which have been generated by disturbances in the blood flow resulting from a stenosis. In order to develop this methodology further, we use both one-dimensional pressure and shear wave experimental data from novel acoustic phantoms to validate corresponding viscoelastic mathematical models, which were developed in a concept paper [8] and refined herein. We estimate model parameters which give a good fit (in a sense to be precisely defined) to the experimental data, and use asymptotic error theory to provide confidence intervals for parameter estimates. Finally, since a robust error model is necessary for accurate parameter estimates and confidence analysis, we include a comparison of absolute and relative models for measurement error.The National Institute of Allergy and Infectious Diseases, the Air Force Office of Scientific Research, the Deopartment of Education and the Engineering and Physical Sciences Research Council (EPSRC)

    Prognostic and predictive effect of KRAS gene copy number and mutation status in early stage non-small cell lung cancer patients

    Get PDF
    Background: In the current analysis, we characterize the prognostic significance of Methods: Clinical and genomic data from the LACE (Lung Adjuvant Cisplatin Evaluation)-Bio consortium was utilized. CNAs were categorized as Gain (CN ≥2) or Neutral (Neut)/Loss; Results: Of the 946 (399 adenocarcinoma) NSCLC patients, 41 [30] had MUT + Gain, 145 [99] MUT + Neut/Loss, 125 [16] WT + Gain, and 635 [254] WT + Neut/Loss. A non-significant trend towards worse lung cancer-specific survival (LCSS; HR =1.34; 95% CI, 0.83-2.17, P=0.232), DFS (HR =1.34; 95% CI, 0.86-2.09, P=0.202) and OS (HR =1.59; 95% CI, 0.99-2.54, P=0.055) was seen in Conclusions: A small prognostic effect o

    Direct measurement of single-molecule dynamics and reaction kinetics in confinement using time-resolved transmission electron microscopy

    Get PDF
    We report experimental methodologies utilising transmission electron microscopy (TEM) as an imaging tool for reaction kinetics at the single molecule level, in direct space and with spatiotemporal continuity. Using reactions of perchlorocoronene (PCC) in nanotubes of different diameters and at different temperatures, we found a period of molecular movement to precede the intermolecular addition of PCC, with a stronger dependence of the reaction rate on the nanotube diameter, controlling the local environments around molecules, than on the reaction temperature (−175, 23 or 400 °C). Once initiated, polymerisation of PCC follows zero-order reaction kinetics with the observed reaction cross section σobs of 1.13 × 10−9 nm2 (11.3 ± 0.6 barn), determined directly from time-resolved TEM image series acquired with a rate of 100 frames per second. Polymerisation was shown to proceed from a single point, with molecules reacting sequentially, as in a domino effect, due to the strict conformational requirement of the Diels–Alder cycloaddition creating the bottleneck for the reaction. The reaction mechanism was corroborated by correlating structures of reaction intermediates observed in TEM images, with molecular weights measured by using mass spectrometry (MS) when the same reaction was triggered by UV irradiation. The approaches developed in this study bring the imaging of chemical reactions at the single-molecule level closer to traditional concepts of chemistry

    Results from the centers for disease control and prevention's predict the 2013-2014 Influenza Season Challenge

    Get PDF
    Background: Early insights into the timing of the start, peak, and intensity of the influenza season could be useful in planning influenza prevention and control activities. To encourage development and innovation in influenza forecasting, the Centers for Disease Control and Prevention (CDC) organized a challenge to predict the 2013-14 Unites States influenza season. Methods: Challenge contestants were asked to forecast the start, peak, and intensity of the 2013-2014 influenza season at the national level and at any or all Health and Human Services (HHS) region level(s). The challenge ran from December 1, 2013-March 27, 2014; contestants were required to submit 9 biweekly forecasts at the national level to be eligible. The selection of the winner was based on expert evaluation of the methodology used to make the prediction and the accuracy of the prediction as judged against the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). Results: Nine teams submitted 13 forecasts for all required milestones. The first forecast was due on December 2, 2013; 3/13 forecasts received correctly predicted the start of the influenza season within one week, 1/13 predicted the peak within 1 week, 3/13 predicted the peak ILINet percentage within 1 %, and 4/13 predicted the season duration within 1 week. For the prediction due on December 19, 2013, the number of forecasts that correctly forecasted the peak week increased to 2/13, the peak percentage to 6/13, and the duration of the season to 6/13. As the season progressed, the forecasts became more stable and were closer to the season milestones. Conclusion: Forecasting has become technically feasible, but further efforts are needed to improve forecast accuracy so that policy makers can reliably use these predictions. CDC and challenge contestants plan to build upon the methods developed during this contest to improve the accuracy of influenza forecasts. © 2016 The Author(s)

    Prevalence and predictors of complementary and alternative medicine modalities in patients with chronic hepatitis B

    Get PDF
    Background & Aims The use of complementary and alternative medicine (CAM) in patients with chronic hepatitis B (CHB) can interact with antiviral treatment or influence health‐seeking behaviour. We aimed to study the use of individual CAM modalities in CHB and explore determinants of use, particularly migration‐related, socio‐economic and clinical factors. Methods A total of 436 CHB outpatients who attended the Toronto Centre for Liver Disease in 2015‐2016 were included in this cross‐sectional study. Using the comprehensive I‐CAM questionnaire and health records, data were collected on socio‐demographic and clinical variables and on usage of 16 CAM modalities in the last year. Results Sixty percent of patients were male, 74% were Asian and 46% were using antiviral treatment. Three‐hundred and nine (71%) patients used CAM. Vitamin/mineral preparations (45% of patients) were most commonly used. Overall CAM use and the specific use of potentially injurious CAM, such as green tea extract (9.2%) and St. John's wort (0.2%), were not associated with liver disease severity. Female sex, family history of CHB, lower serum HBV DNA, and higher socio‐economic status were independently associated with bio‐holistic CAM use, the clinically most‐relevant CAM group (P < 0.05); ethnicity, antiviral therapy use and liver disease severity were not. Conclusions CAM use among CHB patients was extensive, especially use of vitamin and mineral preparations, but without direct influence on liver disease severity. Bio‐holistic CAM use appeared to be associated with socio‐economic status rather than with ethnicity or liver disease severity. Despite the rare use of hepatotoxins, physicians should actively inquire about it

    Direct patterning of gold nanoparticles using flexographic printing for biosensing applications

    Get PDF
    In this paper, we have presented the use of flexographic printing techniques in the selective patterning of gold nanoparticles (AuNPs) onto a substrate. Highly uniform coverage of AuNPs was selectively patterned on the substrate surface, which was subsequently used in the development of a glucose sensor. These AuNPs provide a biocompatible site for the attachment of enzymes and offer high sensitivity in the detection of glucose due to their large surface to volume ratio. The average size of the printed AuNPs is less than 60 nm. Glucose sensing tests were performed using printed carbon-AuNP electrodes functionalized with glucose oxidase (GOx). The results showed a high sensitivity of 5.52 μA mM−1 cm−2 with a detection limit of 26 μM. We have demonstrated the fabrication of AuNP-based biosensors using flexographic printing, which is ideal for low-cost, high-volume production of the devices

    MicroRNA clusters integrate evolutionary constraints on expression and target affinities : the miR-6/5/4/286/3/309 cluster in Drosophila

    Get PDF
    This research was supported by the Hong Kong Research Grant Council GRF Grant (14103516), The Chinese University of Hong Kong Direct Grant (4053248), and TUYF Charitable Trust (6903957) (JHLH).A striking feature of microRNAs is that they are often clustered in the genomes of animals. The functional and evolutionary consequences of this clustering remain obscure. Here, we investigated a microRNA cluster miR-6/5/4/286/3/309 that is conserved across drosophilid lineages. Small RNA sequencing revealed expression of this microRNA cluster in Drosophila melanogaster leg discs, and conditional overexpression of the whole cluster resulted in leg appendage shortening. Transgenic overexpression lines expressing different combinations of microRNA cluster members were also constructed. Expression of individual microRNAs from the cluster resulted in a normal wild-type phenotype, but either the expression of several ancient microRNAs together (miR-5/4/286/3/309) or more recently evolved clustered microRNAs (miR-6-1/2/3) can recapitulate the phenotypes generated by the whole-cluster overexpression. Screening of transgenic fly lines revealed down-regulation of leg patterning gene cassettes in generation of the leg-shortening phenotype. Furthermore, cell transfection with different combinations of microRNA cluster members revealed a suite of downstream genes targeted by all cluster members, as well as complements of targets that are unique for distinct microRNAs. Considered together, the microRNA targets and the evolutionary ages of each microRNA in the cluster demonstrates the importance of microRNA clustering, where new members can reinforce and modify the selection forces on both the cluster regulation and the gene regulatory network of existing microRNAs.PostprintPeer reviewe

    Airway microstructure in idiopathic pulmonary fibrosis: assessment at hyperpolarized 3He diffusion-weighted MRI

    Get PDF
    Background MRI with inhaled hyperpolarized helium 3 (3He) allows for functional and structural imaging of the lungs. Hyperpolarized gas diffusion-weighted (DW) MRI provides noninvasive and quantitative assessment of microstructural acinar changes in the lungs. Purpose To investigate whether microstructural imaging metrics from in-vivo hyperpolarized 3He DW MRI are sensitive to longitudinal changes in a cohort of participants with idiopathic pulmonary fibrosis (IPF) and to evaluate the reproducibility of these metrics and their correlation with existing clinical measures of IPF disease severity. Materials and Methods In this prospective study, 18 participants with IPF underwent 3He DW MRI at 1.5 T and 11 participants underwent an identical same-day examination for reproducibility assessment. Thirteen participants returned for 6- and 12-month follow-up examinations. Pulmonary function tests, including diffusing capacity of the lungs for carbon monoxide and forced vital capacity, were performed at each examination. The apparent diffusion coefficient (ADC) and stretched exponential model–derived mean diffusive length scale (LmD) from DW MRI was compared with baseline CT fibrosis scores and pulmonary function tests by using Spearman rank correlation coefficient. Longitudinal changes in DW MRI and pulmonary function test measurements were assessed with Friedman tests and post hoc Dunn test. Results 3He ADC and LmD were reproducible (mean Bland-Altman analysis bias, 0.002 cm2 · sec-1 and −1.5 μm, respectively). Elevated ADC and LmD regions qualitatively corresponded to fibrotic regions at CT. ADC and LmD correlated with diffusing capacity of the lungs for carbon monoxide (respectively: r = −0.56, P = .017; and r = −0.54, P = .02) and CT fibrosis score (respectively: r = 0.71, P = .001; and r = 0.65, P = .003). LmD increased by 12 μm after 12 months (P = .001) whereas mean ADC (P = .17), forced vital capacity (P = .12), and diffusing capacity of the lungs for carbon monoxide (P > .99) were not statistically different between examinations. Conclusion Helium 3 diffusion-weighted MRI-derived mean diffusive length scale demonstrates longitudinal changes in lungs affected by idiopathic pulmonary fibrosis
    corecore