6,408 research outputs found

    Progress in radar snow research

    Get PDF
    Multifrequency measurements of the radar backscatter from snow-covered terrain were made at several sites in Brookings, South Dakota, during the month of March of 1979. The data are used to examine the response of the scattering coefficient to the following parameters: (1) snow surface roughness, (2) snow liquid water content, and (3) snow water equivalent. The results indicate that the scattering coefficient is insensitive to snow surface roughness if the snow is drv. For wet snow, however, surface roughness can have a strong influence on the magnitude of the scattering coefficient. These observations confirm the results predicted by a theoretical model that describes the snow as a volume of Rayleig scatterers, bounded by a Gaussian random surface. In addition, empirical models were developed to relate the scattering coefficient to snow liquid water content and the dependence of the scattering coefficient on water equivalent was evaluated for both wet and dry snow conditions

    Richardson's pair diffusion and the stagnation point structure of turbulence

    Get PDF
    DNS and laboratory experiments show that the spatial distribution of straining stagnation points in homogeneous isotropic 3D turbulence has a fractal structure with dimension D_s = 2. In Kinematic Simulations the time exponent gamma in Richardson's law and the fractal dimension D_s are related by gamma = 6/D_s. The Richardson constant is found to be an increasing function of the number of straining stagnation points in agreement with pair duffusion occuring in bursts when pairs meet such points in the flow.Comment: 4 pages; Submitted to Phys. Rev. Let

    Pure Gravitational Wave Estimation of Hubble's Constant using Neutron Star-Black Hole Mergers

    Full text link
    Here we show how H0H_0 can be derived purely from the gravitational waves (GW) of neutron star-black hole (NSBH) mergers. This new method provides an estimate of H0H_0 spanning the redshift range, z<0.25z<0.25 with current GW sensitivity and without the need for any afterglow detection. We utilise the inherently tight neutron star mass function together with the NSBH waveform amplitude and frequency to estimate distance and redshift respectively, thereby obtaining H0H_0 statistically. Our first estimate is H0=8646+55H_0 = 86^{+55}_{-46} km s1^{-1} Mpc1^{-1} for the secure NSBH events GW190426 and GW200115. We forecast that soon, with 10 more such NSBH events we can reach competitive precision of δH0/H020%\delta H_0/H_0 \lesssim 20\%.Comment: 13 pages, 10 figure

    Lateral migration of a 2D vesicle in unbounded Poiseuille flow

    Get PDF
    The migration of a suspended vesicle in an unbounded Poiseuille flow is investigated numerically in the low Reynolds number limit. We consider the situation without viscosity contrast between the interior of the vesicle and the exterior. Using the boundary integral method we solve the corresponding hydrodynamic flow equations and track explicitly the vesicle dynamics in two dimensions. We find that the interplay between the nonlinear character of the Poiseuille flow and the vesicle deformation causes a cross-streamline migration of vesicles towards the center of the Poiseuille flow. This is in a marked contrast with a result [L.G. Leal, Ann. Rev. Fluid Mech. 12, 435(1980)]according to which the droplet moves away from the center (provided there is no viscosity contrast between the internal and the external fluids). The migration velocity is found to increase with the local capillary number (defined by the time scale of the vesicle relaxation towards its equilibrium shape times the local shear rate), but reaches a plateau above a certain value of the capillary number. This plateau value increases with the curvature of the parabolic flow profile. We present scaling laws for the migration velocity.Comment: 11 pages with 4 figure

    Security proof of a three-state quantum key distribution protocol without rotational symmetry

    Get PDF
    Standard security proofs of quantum key distribution (QKD) protocols often rely on symmetry arguments. In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The three-state QKD protocol we consider involves three qubit states, where the first two states, |0_z> and |1_z>, can contribute to key generation and the third state, |+>=(|0_z>+|1_z>)/\sqrt{2}, is for channel estimation. This protocol has been proposed and implemented experimentally in some frequency-based QKD systems where the three states can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that these QKD schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Unconditional security can then be proved not only for the ideal case of a single-photon source and perfect detectors, but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold detectors. Our result on the phase error rate upper bound is independent of the loss in the channel. Also, we compare the three-state protocol with the BB84 protocol. For the single-photon source case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the three-state protocol; while for the coherent-source case, the BB84 protocol achieves a higher key generation rate and secure distance than the three-state protocol when a decoy-state method is used.Comment: 10 pages, 3 figures, 2 column

    Larkin-Ovchinnikov-Fulde-Ferrell phase in the superconductor (TMTSF)2ClO4: Theory versus experiment

    Full text link
    We consider a formation of the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) phase in a quasi-one-dimensional (Q1D) conductor in a magnetic field, parallel to its conducting chains, where we take into account both the paramagnetic spin-splitting and orbital destructive effects against superconductivity. We show that, due to a relative weakness of the orbital effects in a Q1D case, the LOFF phase appears in (TMTSF)2_2ClO4_4 superconductor for real values of its Q1D band parameters. We compare our theoretical calculations with the recent experimental data by Y. Maeno's group [S. Yonezawa et al., Phys. Rev. Lett. \textbf{100}, 117002 (2008)] and show that there is a good qualitative and quantitative agreement between the theory and experimental data.Comment: 4 pages, 1 figur

    Gallium implantation induced deep levels in n-type 6H-SIC

    Get PDF
    Two Ga-acceptor levels, located at EV+0.31eV and EV+0.37eV, respectively, have been observed in the gallium implantation manufactured p+n diodes using deep level transient spectroscopy. The behavior of the implanted gallium is very similar to that of implanted aluminum, except that the positions of the introduced levels are different. This result strongly supports the recent model, which was used to explain the discrepant results between boron and aluminum implantation induced deep levels. Besides the two acceptor levels, a thermally stable electron trap is also observed and has been tentatively attributed to a Ga-related complex. © 1999 American Institute of Physics.published_or_final_versio
    corecore