430 research outputs found

    Natural remanent magnetization of Rumanova chondrite (H5) acquired by the shock metamorphisms S3

    Get PDF
    The natural remanent magnetization (NRM) of Rumanova (H5) chondrite was studied to focus on the shock remagnetization characterized by shock level S3. The NRM was examined by AF and thermal demagnetization, temperature dependencies of magnetization and coercivity, magnetic anisotropy, microscopic features using magnetic fluid technique and chemical compositions. Based on these results, Rumanova carries the stable NRM by a fine-grained taenite with 48 wt% Ni in cloudy taenite, although large amount of the soft NRM component with the magnetic anisotropy is overprinted. These taenite grains were produced by disorder from tetrataenite due to heating between 525℃ and 950℃ during shock metamorphism when the parent body collided with the asteroids. Rumanova was remagnetized below 530℃ in the cooling stage by the local magnetic field from strongly magnetized FeNi grains. From these viewpoints, the NRM of Rumanova was not original, but it was remagnetized during shock metamorphism

    Fluctuations for the Ginzburg-Landau ∇ϕ\nabla \phi Interface Model on a Bounded Domain

    Full text link
    We study the massless field on Dn=D∩1nZ2D_n = D \cap \tfrac{1}{n} \Z^2, where D⊆R2D \subseteq \R^2 is a bounded domain with smooth boundary, with Hamiltonian \CH(h) = \sum_{x \sim y} \CV(h(x) - h(y)). The interaction \CV is assumed to be symmetric and uniformly convex. This is a general model for a (2+1)(2+1)-dimensional effective interface where hh represents the height. We take our boundary conditions to be a continuous perturbation of a macroscopic tilt: h(x)=nx⋅u+f(x)h(x) = n x \cdot u + f(x) for x∈∂Dnx \in \partial D_n, u∈R2u \in \R^2, and f ⁣:R2→Rf \colon \R^2 \to \R continuous. We prove that the fluctuations of linear functionals of h(x)h(x) about the tilt converge in the limit to a Gaussian free field on DD, the standard Gaussian with respect to the weighted Dirichlet inner product (f,g)∇ÎČ=∫D∑iÎČi∂ifi∂igi(f,g)_\nabla^\beta = \int_D \sum_i \beta_i \partial_i f_i \partial_i g_i for some explicit ÎČ=ÎČ(u)\beta = \beta(u). In a subsequent article, we will employ the tools developed here to resolve a conjecture of Sheffield that the zero contour lines of hh are asymptotically described by SLE(4)SLE(4), a conformally invariant random curve.Comment: 58 page

    Investigation of heaterless hollow cathode breakdown

    No full text
    The development of long life high powered (>50A) hollow cathodes is of importance to meet the demand of increasingly powerful Gridded Ion engines and Hall Effect thrusters. High power cathodes typically operate at greater temperature ranges, which poses a significant challenge to maintain heater reliability. The heater component commonly used to raise the insert to emissive temperatures, has inherent reliability issues from thermal fatigue caused by thermal cycling with large temperature variations. A self-heating hollow cathode allows for potentially higher reliability through design simplicity of removing the heater component, and in addition there can be savings in mass, volume, ignition time and power. This study characterizes the initiation of the start-up process for a heaterless hollow cathode. As such the study analyses conditions of the initiation as a function of detailed geometrical and physical parameters. The Paschen curve can be seen to give a qualitative explanation for the breakdown voltage variance. The quantitative variations between the empirical results and Paschen curve are discussed in relation to non-uniform pressure simulations

    Isoscalar monopole excitations in 16^{16}O: α\alpha-cluster states at low energy and mean-field-type states at higher energy

    Full text link
    Isoscalar monopole strength function in 16^{16}O up to Ex≃40E_{x}\simeq40 MeV is discussed. We found that the fine structures at the low energy region up to Ex≃16E_{x} \simeq 16 MeV in the experimental monopole strength function obtained by the 16^{16}O(α,αâ€Č)(\alpha,\alpha^{\prime}) reaction can be rather satisfactorily reproduced within the framework of the 4α4\alpha cluster model, while the gross three bump structures observed at the higher energy region (16â‰ČExâ‰Č4016 \lesssim E_{x} \lesssim 40 MeV) look likely to be approximately reconciled by the mean-field calculations such as RPA and QRPA. In this paper, it is emphasized that two different types of monopole excitations exist in 16^{16}O; one is the monopole excitation to cluster states which is dominant in the lower energy part (Exâ‰Č16E_{x} \lesssim 16 MeV), and the other is the monopole excitation of the mean-field type such as one-particle one-hole (1p1h1p1h) which {is attributed} mainly to the higher energy part (16â‰ČExâ‰Č4016 \lesssim E_{x} \lesssim 40 MeV). It is found that this character of the monopole excitations originates from the fact that the ground state of 16^{16}O with the dominant doubly closed shell structure has a duality of the mean-field-type {as well as} α\alpha-clustering {character}. This dual nature of the ground state seems to be a common feature in light nuclei.Comment: 35 pages, 5 figure

    Microscopic study of 4-alpha-particle condensation with proper treatment of resonances

    Full text link
    The 4-alpha condensate state for ^{16}O is discussed with the THSR (Tohsaki-Horiuchi-Schuck-Roepke) wave function which has alpha-particle condensate character. Taking into account a proper treatment of resonances, it is found that the 4-alpha THSR wave function yields a fourth 0^+ state in the continuum above the 4-alpha-breakup threshold in addition to the three 0^+ states obtained in a previous analysis. It is shown that this fourth 0^+ ((0_4^+)_{THSR}) state has an analogous structure to the Hoyle state, since it has a very dilute density and a large component of alpha+^{12}C(0_2^+) configuration. Furthermore, single-alpha motions are extracted from the microscopic 16-nucleon wave function, and the condensate fraction and momentum distribution of alpha particles are quantitatively discussed. It is found that for the (0_4^+)_{THSR} state a large alpha-particle occupation probability concentrates on a single-alpha 0S orbit and the alpha-particle momentum distribution has a delta-function-like peak at zero momentum, both indicating that the state has a strong 4-alpha condensate character. It is argued that the (0_4^+)_{THSR} state is the counterpart of the 0_6^+ state which was obtained as the 4-alpha condensate state in the previous 4-alpha OCM (Orthogonality Condition Model) calculation, and therefore is likely to correspond to the 0_6^+ state observed at 15.1 MeV.Comment: 16 pages, 15 figures, submitted to PRC

    Tightness for a stochastic Allen--Cahn equation

    Full text link
    We study an Allen-Cahn equation perturbed by a multiplicative stochastic noise which is white in time and correlated in space. Formally this equation approximates a stochastically forced mean curvature flow. We derive uniform energy bounds and prove tightness of of solutions in the sharp interface limit, and show convergence to phase-indicator functions.Comment: 27 pages, final Version to appear in "Stochastic Partial Differential Equations: Analysis and Computations". In Version 4, Proposition 6.3 is new. It replaces and simplifies the old propositions 6.4-6.

    Soft and hard wall in a stochastic reaction diffusion equation

    Full text link
    We consider a stochastically perturbed reaction diffusion equation in a bounded interval, with boundary conditions imposing the two stable phases at the endpoints. We investigate the asymptotic behavior of the front separating the two stable phases, as the intensity of the noise vanishes and the size of the interval diverges. In particular, we prove that, in a suitable scaling limit, the front evolves according to a one-dimensional diffusion process with a non-linear drift accounting for a "soft" repulsion from the boundary. We finally show how a "hard" repulsion can be obtained by an extra diffusive scaling.Comment: 33 page

    Consistent alpha-cluster description of the 12C (0^+_2) resonance

    Full text link
    The near-threshold 12C (0^+_2) resonance provides unique possibility for fast helium burning in stars, as predicted by Hoyle to explain the observed abundance of elements in the Universe. Properties of this resonance are calculated within the framework of the alpha-cluster model whose two-body and three-body effective potentials are tuned to describe the alpha - alpha scattering data, the energies of the 0^+_1 and 0^+_2 states, and the 0^+_1-state root-mean-square radius. The extremely small width of the 0^+_2 state, the 0_2^+ to 0_1^+ monopole transition matrix element, and transition radius are found in remarkable agreement with the experimental data. The 0^+_2-state structure is described as a system of three alpha-particles oscillating between the ground-state-like configuration and the elongated chain configuration whose probability exceeds 0.9

    The Balanced Threat Agreement for Individual Externality Negotiation Problems

    Get PDF
    This paper introduces a model to analyze individual externalities and the associated negotiation problem, which has been largely neglected in the game theoretic literature. Following an axiomatic perspective, we propose a solution, as a payoff sharing scheme, called the balanced threat agreement, for such problems. It highlights an agent’s potential influences on all agents by threatening to enter or quit. We further study the solution by investigating its consistency. We also offer a discussion on the related stability issue
    • 

    corecore