72 research outputs found

    Pyrolytic nature of carbonaceous matter in carbonaceous chondrites and secondary metamorphsm

    Get PDF
    Major carbonaceous matter in five C2 carbonaceous chondrites (Y-791198,Y-74662,Murchison, B-7904,and Y-793321) and six C3 carbonaceous chondrites (Allende, Y-790992,Y-791717,Y-81020,ALH-77003,and ALH-77307) was investigated by pyrolysis-gas chromatography. The amount of naphthalene produced on the pyrolysis varied largely from chondrite to chondrite, and the carbonaceous matter in these chondrites could be divided into five groups by the efficiency of formation of pyrolysis products. The groups did not accord with any conventional subdivisions of carbonaceous chondrites. The grouping based on the pyrolytic nature of the major carbonaceous matter may give additional information about secondary metamorphism in carbonaceous chondrites

    In-situ micro Raman studies on graphitic carbon in some Antarctic ureilites

    Get PDF
    The fine structures of graphitic materials contained in four Antarctic ureilites (ALH-77257,ALH-78019,MET-78008 and Y-791538) were investigated using a laser light (514.5nm), which could be focused onto a spot of 1μm in diameter. Raman spectra obtained differ not only among individual ureilite samples, but also among positions within a single carbonaceous vein of the same specimen. Moreover, one can classify the carbon into several groups on the basis of the spectra concerned. For all samples, both well-ordered graphitic carbon and semi-ordered graphitic carbon were observed. Amorphous carbon was detected in ALH-77257 and MET-78008. The difference in structural ordering among the samples is attributed to the difference in distribution of the components of carbonaceous material, indicating minor difference in genetic conditions or in locality within the parent body. Structural heterogeneity of carbon within a single carbonaceous vein implies the occurrence of two (or three) types of carbonaceous matters which have fairly different physicochemical properties and distinct histories. For the genesis of the carbonaceous matter in ureilites, a two-stage model is proposed assuming the graphite crystallization from metallic phase followed by the inflow of semi-ordered graphitic carbon or amorphous carbon into the well-ordered graphitic carbon produced from the metal

    H, C, and N isotopic compositions of Hayabusa category 3 organic samples

    Get PDF
    Since isotopic ratios of H, C, and N are sensitive indicators for determining extraterrestrial organics, we have measured these isotopes of Hayabusa category 3 organic samples of RB-QD04-0047-02, RA-QD02-0120, and RB-QD04-0001 with ion imaging using a NanoSIMS ion microprobe. All samples have H, C, and N isotopic compositions that are terrestrial within errors (approximately ±50‰ for H, approximately ±9‰ for C, and approximately ±2‰ for N). None of these samples contain micrometer-sized hot spots with anomalous H, C, and N isotopic compositions, unlike previous isotope data for extraterrestrial organic materials, i.e., insoluble organic matters (IOMs) and nano-globules in chondrites, interplanetary dust particles (IDPs), and cometary dust particles. We, therefore, cannot conclude whether these Hayabusa category 3 samples are terrestrial contaminants or extraterrestrial materials because of the H, C, and N isotopic data. A coordinated study using microanalysis techniques including Fourier transform infrared spectrometry (FT-IR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), NanoSIMS ion microprobe, Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), and transmission electron microscopy/scanning transmission electron microscopy (TEM/STEM) is required to characterize Hayabusa category 3 samples in more detail for exploring their origin and nature.This research was supported by the JSPS Strategic Fund for Strengthening Leading-edge Research and Development to the JAMSTEC

    ToF-SIMS analysis of carbonaceous particles in the sample catcher of the Hayabusa spacecraft

    Get PDF
    Three carbonaceous category 3 particles (RA-QD02-0180, RB-QD04-0037-01, and RB-QD04-0047-02) returned in the sample catcher from the Hayabusa spacecraft were analyzed by time of flight-secondary ion mass spectrometry (ToF-SIMS) to establish an analytical procedure for determination of their origins. By the different analytical schemes, the three particles gave distinct elemental and molecular ions, in which the organic carbons commonly appear to be associated with nitrogen, silicon, and/or fluorine. The particles could be debris of silicon rubber and fluorinated compounds and are therefore man-made artifacts rather than natural organic matter

    Sequential analysis of carbonaceous materials in Hayabusa-returned samples for the determination of their origin

    Get PDF
    Preliminary results of the analyses of five carbonaceous materials (particle size of approximately 50 μm) from the Hayabusa spacecraft sample catcher, including their texture, chemistry, and chemical/isotopic compositions, are summarized. The carbonaceous particles underwent sequential analysis using a series of microanalytical instruments located at several research institutes and universities. Collected particles were initially classified into four categories: two categories containing extraterrestrial silicate particles, one category containing metal and quartz particles consistent with contamination from the sample catcher or sample manipulation tools, and a final category containing carbonaceous particles. Analysis of this final category was the main focus of this study. Through examination of the carbonaceous materials, the appropriate analytical processes for sample transportation and handling were optimized to minimize sample damage and terrestrial contamination. Particles were investigated by transmission electron microscopy/scanning transmission electron microscopy, and Ca-carbonate inclusions were found in one particle. In a different particle, a heterogeneous distribution of silicon in a uniform C, N, and O matrix was found. Though further analysis is required for a strict determination of particle origin, the differences in the microstructure and elemental distribution of the carbonaceous particles suggest multiple origins.TEM analyses were performed at JEOL Ltd. XANES analysis was conducted in UVSOR Facility in Institute for Molecular Science, supported by Nanotechnology Platform Program (Molecule and Material Synthesis) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan

    X-ray absorption near edge structure spectroscopic study of Hayabusa category 3 carbonaceous particles

    Get PDF
    Analyses with a scanning transmission x-ray microscope (STXM) using x-ray absorption near edge structure (XANES) spectroscopy were applied for the molecular characterization of two kinds of carbonaceous particles of unknown origin, termed category 3, which were collected from the Hayabusa spacecraft sample catcher. Carbon-XANES spectra of the category 3 particles displayed typical spectral patterns of heterogeneous organic macromolecules; peaks corresponding to aromatic/olefinic carbon, heterocyclic nitrogen and/or nitrile, and carboxyl carbon were all detected. Nitrogen-XANES spectra of the particles showed the presence of N-functional groups such as imine, nitrile, aromatic nitrogen, amide, pyrrole, and amine. An oxygen-XANES spectrum of one of the particles showed a ketone group. Differences in carbon- and nitrogen-XANES spectra of the category 3 particles before and after transmission electron microscopic (TEM) observations were observed, which demonstrates that the carbonaceous materials are electron beam sensitive. Calcium-XANES spectroscopy and elemental contrast mapping identified a calcium carbonate grain from one of the category 3 particles. No fluorine-containing molecular species were detected in fluorine-XANES spectra of the particles. The organic macromolecular features of the category 3 particles were distinct from commercial and/or biological ‘fresh (non-degraded)’ polymers, but the category 3 molecular features could possibly reflect degradation of contaminant polymer materials or polymer materials used on the Hayabusa spacecraft. However, an extraterrestrial origin for these materials cannot currently be ruled out

    The noble gas and nitrogen relationship between Ryugu and carbonaceous chondrites

    Get PDF
    Carbonaceous chondrites are considered to have originated from C-type asteroids and represent some of the most primitive material in our solar system. Furthermore, since carbonaceous chondrites can contain significant quantities of volatile elements, they may have played a crucial role in supplying volatiles and organic material to Earth and other inner solar system bodies. However, a major challenge of unravelling the volatile composition of chondritic meteorites is distinguishing between which features were inherited from the parent body, and what may be a secondary feature attributable to terrestrial weathering. In December 2020, the Hayabusa2 mission of the Japan Aerospace Exploration Agency (JAXA) successfully returned surface material from the C-type asteroid (162173) Ryugu to Earth. This material has now been classified as closely resembling CI-type chondrites, which are the most chemically pristine meteorites. The analysis of material from the surface of Ryugu therefore provides a unique opportunity to analyse the volatile composition of material that originated from a CI-type asteroid without the complications arising from terrestrial contamination. Given their highly volatile nature, the noble gas and nitrogen inventories of chondrites are highly sensitive to different alteration processes on the asteroid parent body, and to terrestrial contamination. Here, we investigate the nitrogen and noble gas signature of two pelletized grains collected from the first and second touchdown sites (Okazaki et al., 2022a), to provide an insight into the formation and alteration history of Ryugu. The concentration of trapped noble gas in the Ryugu samples is greater than the average composition of previously measured CI chondrites and are primarily derived from phase Q, although a significant contribution of presolar nanodiamond Xe-HL is noted. The large noble gas concentrations coupled with a significant contribution of presolar nanodiamonds suggests that the Ryugu samples may represent some of the most primitive unprocessed material from the early solar system. In contrast to the noble gases, the abundance of nitrogen and δ15N composition of the two Ryugu pellets are lower than the average CI chondrite value. We attribute the lower nitrogen abundances and δ15N measured in this study to the preferential loss of a 15N-rich phase from our samples during aqueous alteration on the parent planetesimal. The analyses of other grains returned from Ryugu have shown large variations in nitrogen concentrations and δ15N indicating that alteration fluids heterogeneously interacted with material now present on the surface of Ryugu. Finally, the ratio of trapped noble gases to nitrogen is higher than CI chondrites, and is closer to refractory phase Q and nanodiamonds. This indicates that Ryugu experienced aqueous alteration that led to the significant and variable loss of nitrogen, likely from soluble organic matter, without modification of the noble gas budget, which is primarily hosted in insoluble organic matter and presolar diamonds and is therefore more resistant to aqueous alteration.ISSN:0016-7037ISSN:1872-953

    Tempos de comunicação em multiprocessadores

    Get PDF
    Na pesquisa por novas maneiras de se obter maior poder de processamento dos computadores, o paralelismo é considerado uma alternativa viável. Mas a replicação de processadores não representa por si só um avanço nestas pesquisas. Problemas surgiram, antes Inexistentes no paradigma seqüencial: paralelização da solução, mapeamento no arquitetura alvo, balanceamento da carga da maquina paralela, comunicação e sincronização, entre outros. Em particular, a comunicação entre processos em um multiprocessador fracamente acoplado é um aspecto crucial que afeta o desempenho deste tipo de sistema como um todo. Quatro estratégias de comunicação entre processadores são apreciadas neste trabalho: comutação de mensagens ("message switching"), "virtual cut — through", "rendez — vous" "wormhole". Para cada caso, modelos analíticos (baseados em teoria de filas) e de simulação discreta são desenvolvidos e aplicados a fim de determinar, dentro de certos contextos, qual a melhor estratégia. O "cut — through" e a comutacão de mensagens (este última não depende de hardware especifico) são as melhores políticas para sistemas com elevado grau de comunicação (os modelos destas estratégias, utilizados neste trabalho, já foram desenvolvidos na literatura por Kerman) e Kielnrock). O "wormhole", que apresenta características de reserve, pode ser apropriado para sistemas com pouca troca de mensagens. "Rendez—vous" não depende de hardware especial, mas apresenta maior tempo de comunlcação em relação as outras estratégias. Os modelos descritos foram construídos de acordo com uma metodologia passo-a-passo e modular. Esta metodologia é também apresentada e fundamenta a linha de raciocínio desenvolvida durante a apresentac5o dos diferentes capítulos desta dissertação.In the research for more computer processing power, parallelism is a feasible alternative. But the processor replication alone doesn't represent an advance In this field. New problems, absent in the sequential paradigm, have appeared: solution paralleilzatIon, mapping, load balancing, synchronization, communication and others. The communication between processes In loosely - -coupled multiprocessors affects the system performance as a whole. Four Interprocessor communication strategies are analyzed in this work: message switching, virtual cut- -through, "rendez — vous" and wormhole. For each case, analytic (based on queueing theory) and simulation models are developed and applied In order to determine which strategy is the best and under which contexts. Cut—through and message switching (this last strategy doesn't depend on specific hardware) are better for heavy — loaded systems (these strategies were already modelled by Kerman) and Kleinrock). Wormhole (presenting blocking and reserving aspects) can be more suitable for systems with low communication level. "Rendez — vous" doesn't depend on special hardware, but generates longer communication times than those generated by the other communication strategies. The models described were developed according to a step — by — step and modular methodologyThis method Is also presented and gives logical support to the work through the different chapters

    Tempos de comunicação em multiprocessadores

    Get PDF
    Na pesquisa por novas maneiras de se obter maior poder de processamento dos computadores, o paralelismo é considerado uma alternativa viável. Mas a replicação de processadores não representa por si só um avanço nestas pesquisas. Problemas surgiram, antes Inexistentes no paradigma seqüencial: paralelização da solução, mapeamento no arquitetura alvo, balanceamento da carga da maquina paralela, comunicação e sincronização, entre outros. Em particular, a comunicação entre processos em um multiprocessador fracamente acoplado é um aspecto crucial que afeta o desempenho deste tipo de sistema como um todo. Quatro estratégias de comunicação entre processadores são apreciadas neste trabalho: comutação de mensagens ("message switching"), "virtual cut — through", "rendez — vous" "wormhole". Para cada caso, modelos analíticos (baseados em teoria de filas) e de simulação discreta são desenvolvidos e aplicados a fim de determinar, dentro de certos contextos, qual a melhor estratégia. O "cut — through" e a comutacão de mensagens (este última não depende de hardware especifico) são as melhores políticas para sistemas com elevado grau de comunicação (os modelos destas estratégias, utilizados neste trabalho, já foram desenvolvidos na literatura por Kerman) e Kielnrock). O "wormhole", que apresenta características de reserve, pode ser apropriado para sistemas com pouca troca de mensagens. "Rendez—vous" não depende de hardware especial, mas apresenta maior tempo de comunlcação em relação as outras estratégias. Os modelos descritos foram construídos de acordo com uma metodologia passo-a-passo e modular. Esta metodologia é também apresentada e fundamenta a linha de raciocínio desenvolvida durante a apresentac5o dos diferentes capítulos desta dissertação.In the research for more computer processing power, parallelism is a feasible alternative. But the processor replication alone doesn't represent an advance In this field. New problems, absent in the sequential paradigm, have appeared: solution paralleilzatIon, mapping, load balancing, synchronization, communication and others. The communication between processes In loosely - -coupled multiprocessors affects the system performance as a whole. Four Interprocessor communication strategies are analyzed in this work: message switching, virtual cut- -through, "rendez — vous" and wormhole. For each case, analytic (based on queueing theory) and simulation models are developed and applied In order to determine which strategy is the best and under which contexts. Cut—through and message switching (this last strategy doesn't depend on specific hardware) are better for heavy — loaded systems (these strategies were already modelled by Kerman) and Kleinrock). Wormhole (presenting blocking and reserving aspects) can be more suitable for systems with low communication level. "Rendez — vous" doesn't depend on special hardware, but generates longer communication times than those generated by the other communication strategies. The models described were developed according to a step — by — step and modular methodologyThis method Is also presented and gives logical support to the work through the different chapters
    • …
    corecore