52 research outputs found

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    JASMINE: Near-infrared astrometry and time-series photometry science

    Get PDF
    The Japan Astrometry Satellite Mission for INfrared Exploration (JASMINE) is a planned M-class science space mission by the Institute of Space and Astronautical Science, the Japan Aerospace Exploration Agency. JASMINE has two main science goals. One is Galactic archaeology with a Galactic Center survey, which aims to reveal the Milky Way’s central core structure and formation history from Gaia-level (∼25 μ{\mu} as) astrometry in the near-infrared (NIR) Hw band (1.0–1.6 μ{\mu} m). The other is an exoplanet survey, which aims to discover transiting Earth-like exoplanets in the habitable zone from NIR time-series photometry of M dwarfs when the Galactic Center is not accessible. We introduce the mission, review many science objectives, and present the instrument concept. JASMINE will be the first dedicated NIR astrometry space mission and provide precise astrometric information on the stars in the Galactic Center, taking advantage of the significantly lower extinction in the NIR. The precise astrometry is obtained by taking many short-exposure images. Hence, the JASMINE Galactic Center survey data will be valuable for studies of exoplanet transits, asteroseismology, variable stars, and microlensing studies, including discovery of (intermediate-mass) black holes. We highlight a swath of such potential science, and also describe synergies with other missions

    Escape from Pluripotency via Inhibition of TGF-β/BMP and Activation of Wnt Signaling Accelerates Differentiation and Aging in hPSC Progeny Cells

    No full text
    Summary: Human pluripotent stem cells (hPSCs) represent a potentially valuable cell source for applications in cell replacement therapy, drug development, and disease modeling. For all these uses, it is necessary to develop reproducible and robust protocols for differentiation into desired cell types. However, differentiation protocols remain unstable and inefficient, which makes minimizing the differentiation variance among hPSC lines and obtaining purified terminally differentiated cells extremely time consuming. Here, we report a simple treatment with three small molecules—SB431542, dorsomorphine, and CHIR99021—that enhanced hPSC differentiation into three germ layers with a chemically transitional embryoid-body-like state (CTraS). Induction of CTraS reduced the innate differentiation propensities of hPSCs (even unfavorably differentiated hPSCs) and shifted their differentiation into terminally differentiated cells, particularly neurons. In addition, CTraS induction accelerated in vitro pathological expression concurrently with neural maturation. Thus, CTraS can promote the latent potential of hPSCs for differentiation and potentially expand the utility and applicability of hPSCs. : Simple treatment with three small molecules enhanced hPSC differentiation into three germ layers, namely CTraS. CTraS reduced the innate differentiation propensities of hPSCs and shifted them into terminal differentiations. CTraS induction accelerated in vitro pathological expression with maturation and aging. Thus, CTraS can bring out the latent potential of hPSCs. Keywords: induced pluripotent stem cells, stem cell differentiation, stem cell biotechnology, disease model, differentiation, pluripotency, agin

    Case report of severe myocarditis in an immunocompromised child with Respiratory Syncytial Virus infection

    No full text
    Abstract Background Respiratory syncytial virus (RSV) infection is common and may be severe among patients with preexisting cardiac anomalies, but direct involvement of myocardial damage is not common in those patients. Additionally, myocardial involvement has been rarely described among immune compromised children. Case presentation A 4-year-old girl with acute lymphoblastic leukemia who received maintenance chemotherapy in an outpatient clinic developed systemic inflammatory response syndrome. RSV infection was confirmed by a positive rapid antigen test and serological assay. Subsequently, she was diagnosed with severe myocarditis caused by RSV infection, which was diagnosed by abnormal findings of cardiac echography and ECG and elevated biomarkers for myocardial damage. Then, she was treated in the intensive care unit for 13 days. High amounts of RSV type B RNA was detected in tracheal aspirates and serum sample. Conclusion This case report emphasizes that RSV infection may be associated with myocarditis in immunocompromised children receiving maintenance chemotherapy
    corecore