10 research outputs found

    Hypoglycemia in blood glucose level in type 2 diabetic Japanese patients by continuous glucose monitoring

    No full text
    Abstract Background Hypoglycemia is associated with cardiovascular diseases, increased risk of death. Therefore, it is important to avoid hypoglycemia. The aim of this study was to characterize hypoglycemia according to glycated hemoglobin (HbA1c) level and determine the contributing factors in type 2 diabetes mellitus (T2DM), using continuous glucose monitoring (CGM). Methods T2DM patients (n = 293) receiving inpatient care were divided into five groups according to HbA1c level on admission (Group 1: ≥ 6 to  180 mg/dL. In any of the HbA1c groups, variations in blood glucose level were significantly larger in patients with hypoglycemia than without. Conclusions Hypoglycemia occurred in patients with a wide range of HbA1c on admission (range 6–9%), suggesting that prediction of hypoglycemia based on HbA1c alone is inappropriate. Among patients with low HbA1c, strict control sometimes induce hypoglycemia. Among patients with high HbA1c, the possibility of hypoglycemia should be considered if there is a marked discrepancy between HbA1c and randomly measured blood glucose level. Larger variations in blood glucose level induce hypoglycemia in any of the HbA1c groups. The treatment to reduce variations in blood glucose level is important to prevent hypoglycemia

    The Cytoplasmic Tail of GM3 Synthase Defines Its Subcellular Localization, Stability, and In Vivo Activity

    No full text
    GM3 synthase (SAT-I) is the primary glycosyltransferase responsible for the biosynthesis of ganglio-series gangliosides. In this study, we identify three isoforms of mouse SAT-I proteins, named M1-SAT-I, M2-SAT-I, and M3-SAT-I, which possess distinct lengths in their NH2-terminal cytoplasmic tails. These isoforms are produced by leaky scanning from mRNA variants of mSAT-Ia and mSAT-Ib. M2-SAT-I and M3-SAT-I were found to be localized in the Golgi apparatus, as expected, whereas M1-SAT-I was exclusively found in the endoplasmic reticulum (ER). Specific multiple arginines (R) arranged in an R-based motif, RRXXXXR necessary for ER targeting, were found in the cytoplasmic tail of M1-SAT-I, and in vivo GM3 biosynthesis by M1-SAT-I was very low because of restricted transport to the Golgi apparatus. In addition, M1-SAT-I and M3-SAT-I had a long half-life relative to M2-SAT-I. This is the first report demonstrating the presence of an ER-targeting R-based motif in the cytoplasmic tail of a protein in the mammalian glycosyltransferase family of enzymes. The system, which produces SAT-I isoforms having distinct characteristics, is likely to be of critical importance for the regulation of GM3 biosynthesis under various pathological and physiological conditions
    corecore