191 research outputs found

    Semi-automated assembly of high-quality diploid human reference genomes

    Get PDF
    The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements

    A draft human pangenome reference

    Get PDF
    Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individual

    Whole genome sequence of the Treponema Fribourg- Blanc: Unspecified simian isolate is highly similar to the yaws subspecies

    Get PDF
    BACKGROUND:Unclassified simian strain Treponema Fribourg-Blanc was isolated in 1966 from baboons (Papio cynocephalus) in West Africa. This strain was morphologically indistinguishable from T. pallidum ssp. pallidum or ssp. pertenue strains, and it was shown to cause human infections. METHODOLOGY/PRINCIPAL FINDINGS:To precisely define genetic differences between Treponema Fribourg-Blanc (unclassified simian isolate, FB) and T. pallidum ssp. pertenue strains (TPE), a high quality sequence of the whole Fribourg-Blanc genome was determined with 454-pyrosequencing and Illumina sequencing platforms. Combined average coverage of both methods was greater than 500×. Restriction target sites (n = 1,773), identified in silico, of selected restriction enzymes within the Fribourg-Blanc genome were verified experimentally and no discrepancies were found. When compared to the other three sequenced TPE genomes (Samoa D, CDC-2, Gauthier), no major genome rearrangements were found. The Fribourg-Blanc genome clustered with other TPE strains (especially with the TPE CDC-2 strain), while T. pallidum ssp. pallidum strains clustered separately as well as the genome of T. paraluiscuniculi strain Cuniculi A. Within coding regions, 6 deletions, 5 insertions and 117 substitutions differentiated Fribourg-Blanc from other TPE genomes. CONCLUSIONS/SIGNIFICANCE:The Fribourg-Blanc genome showed similar genetic characteristics as other TPE strains. Therefore, we propose to rename the unclassified simian isolate to Treponema pallidum ssp. pertenue strain Fribourg-Blanc. Since the Fribourg-Blanc strain was shown to cause experimental infection in human hosts, non-human primates could serve as possible reservoirs of TPE strains. This could considerably complicate recent efforts to eradicate yaws. Genetic differences specific for Fribourg-Blanc could then contribute for identification of cases of animal-derived yaws infections

    Somatic neurofibromatosis type 1 (NF1) inactivation characterizes NF1-associated pilocytic astrocytoma

    Get PDF
    Low-grade brain tumors (pilocytic astrocytomas) arising in the neurofibromatosis type 1 (NF1) inherited cancer predisposition syndrome are hypothesized to result from a combination of germline and acquired somatic NF1 tumor suppressor gene mutations. However, genetically engineered mice (GEM) in which mono-allelic germline Nf1 gene loss is coupled with bi-allelic somatic (glial progenitor cell) Nf1 gene inactivation develop brain tumors that do not fully recapitulate the neuropathological features of the human condition. These observations raise the intriguing possibility that, while loss of neurofibromin function is necessary for NF1-associated low-grade astrocytoma development, additional genetic changes may be required for full penetrance of the human brain tumor phenotype. To identify these potential cooperating genetic mutations, we performed whole-genome sequencing (WGS) analysis of three NF1-associated pilocytic astrocytoma (PA) tumors. We found that the mechanism of somatic NF1 loss was different in each tumor (frameshift mutation, loss of heterozygosity, and methylation). In addition, tumor purity analysis revealed that these tumors had a high proportion of stromal cells, such that only 50%–60% of cells in the tumor mass exhibited somatic NF1 loss. Importantly, we identified no additional recurrent pathogenic somatic mutations, supporting a model in which neuroglial progenitor cell NF1 loss is likely sufficient for PA formation in cooperation with a proper stromal environment

    Whole genome sequence of the Treponema pallidum subsp. endemicum strain Bosnia A: The genome is related to yaws treponemes but contains few loci similar to syphilis treponemes

    Get PDF
    T. pallidum subsp. endemicum (TEN) is the causative agent of bejel (also known as endemic syphilis). Clinical symptoms of syphilis and bejel are overlapping and the epidemiological context is important for correct diagnosis of both diseases. In contrast to syphilis, caused by T. pallidum subsp. pallidum (TPA), TEN infections are usually spread by direct contact or contaminated utensils rather than by sexual contact. Bejel is most often seen in western Africa and in the Middle East. The strain Bosnia A was isolated in 1950 in Bosnia, southern Europe.The complete genome of the Bosnia A strain was amplified and sequenced using the pooled segment genome sequencing (PSGS) method and a combination of three next-generation sequencing techniques (SOLiD, Roche 454, and Illumina). Using this approach, a total combined average genome coverage of 513× was achieved. The size of the Bosnia A genome was found to be 1,137,653 bp, i.e. 1.6-2.8 kbp shorter than any previously published genomes of uncultivable pathogenic treponemes. Conserved gene synteny was found in the Bosnia A genome compared to other sequenced syphilis and yaws treponemes. The TEN Bosnia A genome was distinct but very similar to the genome of yaws-causing T. pallidum subsp. pertenue (TPE) strains. Interestingly, the TEN Bosnia A genome was found to contain several sequences, which so far, have been uniquely identified only in syphilis treponemes.The genome of TEN Bosnia A contains several sequences thought to be unique to TPA strains; these sequences very likely represent remnants of recombination events during the evolution of TEN treponemes. This finding emphasizes a possible role of repeated horizontal gene transfer between treponemal subspecies in shaping the Bosnia A genome
    • …
    corecore